
BISON Workshop
Implicit, parallel, fully-coupled nuclear fuel
performance analysis

Fuels Modeling and Simulation Department
Idaho National Laboratory

Table of Contents

BISON Overview . 3
Getting Started . 18

Git . 19
Building BISON . 25
Contributing to BISON . 27
External Users . 29

Thermomechanics Basics . 32
Heat Conduction . 36
Solid Mechanics . 51
Contact . 61

Fuels Specific Models . 75
Example Problem . 84
Mesh Generation. .126
Running BISON . 141
Postprocessing. .152
Best Practices and Solver Options (Advanced Topic) 217
Adding a New Material Model to BISON . 233
Adding a Regression Test to bison/test . 255
Additional Information . 267
References . 270

2 / 271

BISON Overview

BISON Team Members

• Rich Williamson
– richard.williamson@inl.gov

• Steve Novascone
– stephen.novascone@inl.gov

• Jason Hales
– jason.hales@inl.gov

• Ben Spencer
– benjamin.spencer@inl.gov

• Giovanni Pastore
– giovanni.pastore@inl.gov

• Danielle Perez
– danielle.perez@inl.gov

• Russell Gardner
– russell.gardner@inl.gov

• Kyle Gamble
– kyle.gamble@inl.gov

• Mudasar Zahoor
– mudasar.zahoor@inl.gov

• Al Casagranda
– albert.casagranda@inl.gov

• Wenfeng Liu
– wenfeng.liu@anatech.com

• Ahn Mai
– anh.mai@anatech.com

• Jack Galloway
– jackg@lanl.gov

• Christopher Matthews
– cmatthews@lanl.gov

• Cetin Unal
– cu@lanl.gov

4 / 271

Fuel Behavior: Introduction

At beginning of life, a
fuel element is quite
simple...

Nakajima et al., Nuc. Eng. Des.,

148, 41 (1994)

=⇒
but
irradiation
brings about
substantial
complexity...

Michel et al., Eng. Frac. Mech., 75, 3581 (2008)

Fuel Fracture

Olander, p. 584 (1978)

Multidimensional Contact and
Deformation

Olander, p. 323 (1978)

Fission Gas

Bentejac et al., PCI Seminar (2004)

Stress Corrosion
Cracking Cladding
Failure

5 / 271

Fuel Behavior Modeling: Coupled Multiphysics

• Multiphysics
– Fully-coupled nonlinear

thermomechanics
– Multiple species diffusion
– Neutronics
– Thermalhydraulics
– Chemistry

• Multi-space scale
– Important physics at

atomistic and
microstructural level

– Practical engineering
simulations require
continuum level

• Multi-time scale
– Steady operation

(∆t > 1 week)
– Power ramps/accidents

(∆t < 0.1 s) Reproduced from Beyer et al., BNWL-1898, Pacific Northwest Laboratories (1975)

COOLANT
TEMPERATURE

CLADDING
TEMPERATURE

CLADDING
CREEP RATE

GAS
TEMPERATURE

FUEL
TEMPERATURES

CLADDING
PROPERTIES

CLADDING
STRAIN

INTERNAL
GAS PRESSURE

FUEL-CLADDING
INTERFACIAL

PRESSURE OR GAP

CLADDING
STRESS

COOLANT
PRESSURE

FISSION GAS
INVENTORY

GAS
COMPOSITION

POWER

FLUX

BURNUP

CLADDING
GROWTH

FUEL
CREEP
RATE

FUEL
STRAIN

FUEL
STRESS

FUEL-CLADDING HEAT
TRANSFER COEFFICIENT

GAS
RELEASE

RATE

FUEL THERMAL
CONDUCTIVITY

TIME

DENSIFICATION

PORE
COALESCENCE

FUEL
RESTRUCTURING

PELLET
CRACKING

POROSITYO/M RATIO

6 / 271

BISON – Nuclear Fuel Performance Analysis

• BISON is a nuclear fuel performance analysis tool. It is used primarily for
analysis of UO2 fuel but has also been used to model TRISO fuel and both
rod and plate metal fuel. BISON is built on top of MOOSE.

• BISON is implicit
– Large time steps

• BISON runs in parallel
– Runs naturally on one or many processors

• BISON is fully-coupled
– No operator split or staggered scheme necessary
– All unknowns solved for simultaneously

• BISON is under development – there is still much to do
– Fission gas release model continues to improve
– Contact can be a challenge; friction needs improvement
– Automatic time stepping needs improvement
– Limited material models (UO2/MOX and Zr4/HT9)
– Documentation and validation is evolving

7 / 271

BISON’s Relationship to MOOSE

• Code too specific for MOOSE but useful for
multiple applications is collected in
libraries.

• BISON depends on:
• MOOSE Modules (solid mechanics, fluid

dynamics, etc.) depends on:
• MOOSE (multiphysics application

framework) depends on:
• libMesh (numerical PDE solution

framework out of UT-Austin) depends on:
• PETSc, Exodus II, MPI, etc.

8 / 271

BISON LWR Capabilities

• General capabilities
– 3D, 2D-RZ, 1D fully coupled

thermomechanics
– Large deformations
– Parallel
– Meso-scale informed

• Oxide Fuel Behavior
– Temperature/burnup/porosity

dependent material
properties

– Volumetric heat generation
– Thermal, fission product

swelling, and densification
strains

– Thermal and irradiation creep
– Fuel fracture via relocation

and smeared cracking
– Fission gas release (2 stage)

• transient release
• grain growth/sweeping
• athermal release

Temperature

• Gap/Plenum Behavior
– Gap heat transfer with

kg = f (T , n)
– Mechanical contact
– Plenum pressure as a

function of :
• evolving gas volume

(from mechanics)
• gas mixture (FGR)
• gas temperature

approximation

• Cladding Behavior
– Thermal and irradiation

creep
– Thermal expansion
– Irradiation growth
– Plasticity
– Hydride Damage

• Coolant Channel
– Closed channel thermal

hydraulics with heat
transfer coefficients

9 / 271

BISON Example – Axisymmetric LWR Fuel Rodlet

10 / 271

BISON Results – Axisymmetric LWR Fuel Rodlet

Burnup (MWd/kgU)

Te
m

pe
ra

tu
re

 (K
)

0 10 20 30 40 50

600

750

900

1050

1200

1350

fuel center - smeared pellet
fuel center - discrete pellet
fuel surface - smeared pellet
fuel surface - discrete pellet
clad inner surface - smeared pellet
clad inner surface - discrete pellet

Burnup (MWd/kgU)
G

ap
 W

id
th

 (µ
m

)
0 10 20 30 40 50

0

20

40

60

80

smeared pellet

• Thermal expansion, fuel densification, clad creep-down, fission gas
release, contact, and burnup dependent fuel thermal conductivity all affect
fuel temperatures

• Hourglass shape of pellets is evident in gap closure histories
11 / 271

BISON Results – Axisymmetric LWR Fuel Rodlet

Burnup (MWd/kgU)

Pr
es

su
re

 (M
Pa

)

FI
ss

io
n

G
as

 R
el

ea
se

 (f
ra

c.
 o

f p
ro

du
ce

d)

0 10 20 30 40 50
0

3

6

9

12

15

18

0

0.05

0.1

0.15

0.2

0.25

Plenum Pressure
Fission Gas

• Fission gas release begins at a burnup of 22 MWd/kgU and results in a
strong increase in rod pressure

• Hourglass shape of pellets creates ridges in clad during PCMI

12 / 271

BISON Example – Missing Pellet Surface

• High resolution 3D calculation (25,000 elements, 1.1x106 dof) run on 120
processors

• Simulation from fresh fuel state with a typical power history, followed by a
late-life power ramp

13 / 271

BISON Results – Missing Pellet Surface

Fuel Temperature

Clad Temperature

• Missing pellet surface has a very
significant effect on temperature
and stress state in rod

• Model can be used to examine
source of rod failures

Clad Stress
14 / 271

BISON Coated-Particle Fuel Capabilities

• General capabilities
– 3D, 2D-RZ, 1D fully

coupled thermomechanics
with species diffusion

– Large deformation
– Elasticity with thermal

expansion
– Steady and transient
– Massively parallel

• Fuel Kernel
– Temperature, burnup,

porosity dependent
conductivity

– Solid and gaseous fission
product swelling

– Densification
– Thermal/irradiation creep
– Fission gas release
– CO production
– Radioactive decay

Tangential Stress

• Gap Behavior
– Gap heat transfer with

kg = f (T , n)
– Gap mass transfer
– Mechanical contact
– Plenum pressure as a

function of :
• evolving gas volume

(from mechanics)
• gas mixture (FGR

and CO)
• gas temperature

approximation

• Silicon Carbide
– Irradiation creep

• Pyrolytic Carbon
– Anisotropic

irradiation-induced
strain

– Irradiation creep

15 / 271

BISON Results – TRISO Particle

• Validated against PARFUME,
ATLAS, STRESS3

• Code comparisons are excellent
• Run times of 1 s are typical

Fast Neutron Fluence (10
25

 n/m
2
)

T
a

n
g

e
n

ti
a

l
S

tr
e

s
s

 (
M

P
a

)

0 0.5 1 1.5 2 2.5 3

­400

­300

­200

­100

0

100

200

BISON IPyC

STRESS3 IPyC

ATLAS IPyC

PARFUME IPyC

BISON SiC

STRESS3 SiC

ATLAS SiC

PARFUME SiC

PBR cyclic particle temperature

• Apherical particles are common
• Raises peak tensile stress by 4x
• Runs in a few minutes (8 procs)

16 / 271

BISON Results – 3D Simulation of Thinned SiC Layer

• Localized SiC thinning due to soot inclusions or fission product interaction
• 3D capability demonstrated on eighth-particle with random thinning

• Significantly higher tensile stress and cesium release; impossible to predict
with state-of-the-art 1D or 2D analyses

• Typical run times of a few hours on 8 procs
17 / 271

Getting Started

Getting started with BISON: Git

These instructions are meant to help users of both local machines and the INL
High Performance Computing (HPC) get started with BISON. The installation
and build processes are the same for both with the exception of the MOOSE
package, which is prebuilt on HPC.
BISON and MOOSE use git for code management and distribution. For that
reason you will need to learn a little bit about git; even if you are not planning on
contributing to the code. You will also need access to the BISON repository and
a license agreement. Instructions for this are below.

• Contact a member of the BISON team to get HPC access and a licensing
agreement for your institution. This process may take a few weeks. BISON
is housed at https://hpcgitlab.inl.gov which lives on the INL HPC,
therefore HPC access is required. Continue on to the next step once HPC
access is obtained.

• Install the MOOSE Package (Only needed if you ARE running on a local
machine)

– Goto www.mooseframework.org, click ‘Getting Started’ and follow all the
instructions.

– Make an account on github.com. It is free and required to contribute to
MOOSE.

19 / 271

Getting Started with BISON: Git

Adding your SSH keys
• If you are working from outside the INL you will need to create a tunnel to

INL using your HPC account and the instructions that should have been
included. See the ‘External Users’ section for more help.

• If you can log in to https://hpcgitlab.inl.gov and then access the
idaholab/bison project you may continue. Contact the BISON department
for repository access if you are unable to access the project.

• Open the terminal on the machine that you intend to use and enter the
following commands:

– > ssh-keygen -t rsa -C ‘your email’ Press ‘Enter’ when you are
asked for a passphrase. You may enter a passphrase but you will need to enter
it whenever you connect to the repository.

– > cat ∼/.ssh/id pub and copy what is displayed
– Log on to https://hpcgitlab.inl.gov using your HPC credentials and

then paste the key to ‘SSH Keys’ under ‘Profile Settings’ on hpcgitlab.
– Paste this key to your github.com account as well, in the same manner.

• These steps are necessary for repository authentication.

20 / 271

Getting Started with BISON: Git

This is a pictorial diagram of the git environment. In this diagram ‘local machine’
represents either a physical, local machine or the HPC. The two upper circles
represent space on https://hpcgitlab.inl.gov. The dotted arrows
‘upstream’ and ‘origin’ represent git remotes which are just aliases to paths.

21 / 271

Getting Started with BISON: Git

Fork BISON
• On hpcgitlab, search for ‘idaholab/bison’ and then click ‘Fork’. This makes a

personal version of the BISON project denoted ‘username/bison’.
– NOTE: Do not delete your fork. Recovery is a troublesome process.

• Click on ‘Members’ and add ‘moosetest’ as a ‘Reporter’.
– This change is required for the testing system to work, which is necessary for

contributing to the code. If you will not be contributing to the code, it is not
required.

• If you wish to grant access to your fork to other BISON team members
(helpful if you want them to review changes in your branch before
submitting a merge request), add specific BISON team members as
‘Reporter’. This is optional and can be skipped if you will be running BISON
but not changing the code.

22 / 271

Getting Started with BISON: Git

Load Modules
• HPC: > module load use.moose moose-dev-gcc will load the most

up to date Moose modules. You may consider adding this command to your
logon script.

• Local machine: As long as you installed the Moose package with the
default settings the needed modules were added to your bash profile. You
can double-check they are install by opening a terminal and typing
> module list, this should list a bunch of MOOSE related modules.

Cloning BISON
• Create a directory on the computer that you are using. We suggest

‘projects’ for convention, but you can name it anything.
– > mkdir ∼/projects

• To clone BISON, enter the directory that was just made,
> cd ∼/projects and enter the following git commands:

– > git clone git@hpcgitlab.inl.gov:<username>/bison.git
• This copies your fork of BISON to your projects directory.

– Enter the bison directory that was just created.
– > git submodule update --init

• This initializes any submodules that BISON depends on: in this case MOOSE.

23 / 271

Getting Started with BISON: Git

Some Git Cleanup
• In the bison directory enter the following:

– > git config user.name ‘your name’
– > git config user.email ‘your email’

• These commands add your user information to your repository.
– > git remote add upstream
git@hpcgitlab.inl.gov:idaholab/bison.git

• This adds a remote (path) to idaholab/bison. At this point if you type
> git remote show you should see origin and upstream. Origin points to your
fork of BISON and upstream points to idaholab/bison.
The command > git remote show <remote name> will display the path.

24 / 271

Getting Started with BISON: Building BISON

Build libMesh
• Open a terminal and go to > ∼/projects/bison/moose/scripts and

then run the > update and rebuild libmesh.sh script. This script will
download and install the latest version of libMesh.

• This is also the method used to update libMesh when updates are
available. Notices about updates are sent to the moose-users and
moose-announce mailing lists.

Build BISON
• Go to > ∼/projects/bison and type make -j#, where # is the number

of processors that you would like to use.
– NOTE: Do not use more than 6 processors when building on the HPC. The

login nodes have shared resources for all users and you will attract unwanted
attention by using them all.

• After the build is completed run > run tests -j# to run all of the BISON
regression tests to make sure you have a clean build.

25 / 271

Getting Started with BISON: Building BISON

Running an Example Problem
• > cd ∼/bison/examples/2D-RZ rodlet 10pellets

• > ../../bison-opt -i input.i For serial processing
• > mpiexec -n # ../../bison-opt -i input.i For multiprocessor

where # is the number of processors.

Updating BISON (In the bison directory)
• > git pull --rebase upstream devel

– This command pulls the updates from the devel branch of idaholab/bison via
the upstream remote and applies them to your current local branch.

• > git submodule update
– This command applies the update to any submodules. Once again this is

MOOSE.
• > make cleanall

– This command deletes files that have dependencies. If your build has errors
make sure you run this.

• > make -j#
– This command build the BISON executable.

26 / 271

Contributing to BISON

Make an Issue
• Make an issue on hpcgitlab with a problem or feature that you are working

on.
– If you are making an issue about a bug or new feature that you would like

please write details. For example: I received this ‘error’ using BISON ‘version’
on this ‘machine’ and this is what I have already ‘tried’.

Working in Branches
• Update your version of BISON.
• Create a new branch in your personal repository to work in. We suggest

naming it with the issue number that you just made as in the following: >
git checkout -b <feature name>

• Do work in the branch that was created.
• Add the work to be committed. There are a couple ways to add:

– > git add <filename>
– > git add -i (this opens the interactive window and is useful for picking

multiple files to add).

• Enter > git status to make sure the files that you wanted are added
and staged.

27 / 271

Contributing to BISON

Working in Branches cont.
• Commit the work using > git commit, this will open a vi window where

you will make a commit message that references the issue number. You
can also use > git commit -m ‘commit message’.

– NOTE: When referencing the issue number you need to have
#<your number> with no spaces. The testing system will fail you otherwise.
Example: #12 -> Good, # 12 -> Bad.

• Push your commit to your bison fork with the following: > git push
origin <your branch name>

• Create a merge request on hpcgitlab and verify that the changes that you
are making are indeed intended.

• Stay involved.
Any and all information about git can be found here:
https://git-scm.com/doc this guide was made to help you get started. It
is NOT all encompassing.

Consider joining the user lists.
• Moose user lists at mooseframework.org
• Bison-users by emailing the BISON dept. Many questions can be or

already have been answered here and you can interact with the
MOOSE-BISON community.

28 / 271

External Users

• For external users there are a few additional steps to checking out the
code. First request an HPC account. Once an HPC account has been
generated a ssh tunnel will need to be set up to access GitLab. Add the
following lines to your ∼/.ssh/config file. Replace <USERNAME> with the
username for your HPC account. NOTE: Type these commands,
copy-paste from PDF can introduce metadata that fouls the process.

#Multiplex connections for less RSA typing
Host *

ControlMaster auto
ControlPath ˜/.ssh/master-%r@%h:%p

General Purpose HPC Machines
Host hpcsc flogin1 flogin2 falcon1 falcon2

User <USERNAME>
ProxyCommand ssh <USERNAME>@hpclogin.inl.gov netcat %h %p

#GitLab
Host hpcgitlab.inl.gov

User <USERNAME>
ProxyCommand nc -x localhost:5555 %h %p

#Forward license servers, webpages, and source control
Host hpclogin hpclogin.inl.gov

User <USERNAME>
HostName hpclogin.inl.gov
LocalForward 8080 hpcweb:80
LocalForward 4443 hpcsc:443

29 / 271

External Users

• Next create a tunnel into the HPC environment and leave it running while
you require access to GitLab. If you close this window, you close the
connection:

ssh -D 5555 username@hpclogin.inl.gov

• Then you have to adjust your socks proxy settings for your web browser to
reflect the following settings localhost:5555 where localhost is the server
name and 5555 is the port number.

• If you do not know how to do that, look up Change socks proxy settings
for <insert the name of your web browser here> on google.com or
some other search engine. Once that is complete you can login to the
GitLab website.

• The rest of the steps for checking out the code are the same as for internal
users given in the previous slides.

30 / 271

https://hpcgitlab.inl.gov/

The BISON Wiki Page

In progress

31 / 271

MOOSE Modules and
Thermomechanics Basics

MOOSE as a Partial Differential Equation Solver

• We are interested in solving a set of partial differential equations (PDEs)
that represent physical processes, such as heat transfer and solid
mecahnics.

• MOOSE is a general solver that uses the finite element method (FEM) to
solve arbitrary sets of PDEs for specific applications.

• FEM converts complex PDEs into a set of coupled algebraic equations
which can be readily solved on a computer.

• FEM is applicable to a wide range of PDEs and can represent problems
with arbitrary geometry.

33 / 271

FEM Vocabulary

The following list contains terms commonly used when discussing the finite
element approach. These definitions are NOT COMPREHENSIVE. This list is
just to get the conversation started.

• Domain - The space or geometry of your problem.
• Element - To obtain the approximate solution, the domain must be

subdivided (discretized) into simpler smaller regions. These are called
elements.

• Node - The points at which the elements are connected. We typically
compute the value of primary solution variables (temperature,
displacement) at nodes. Also where Dirichlet boundary conditions are
applied.

• Boundary Condition - A constraint, or ‘load’ applied to the domain.
• Quadrature Point - One of the steps to finding the approximate solution to

the PDE is integration. Quadrature points are where this integration
happens. They are located within the elements.

• Test or Shape Function - Functions that help form the approximate solution
to the PDE.

34 / 271

MOOSE Modules

• MOOSE Modules holds a collection of general physics capabilities.

• The purpose is to encapsulate common kernels, BCs and materials to keep
them from being replicated in multiple codes.

• Examples include heat conduction, solid mechanics, and Navier-Stokes.

• No export controlled physics (e.g., neutronics) should be added to MOOSE
Modules.

• Applications based on MOOSE can link in their needed modules.

• For example, BISON uses the Heat Conduction, Solid Mechanics, and
Contact modules.

35 / 271

Modules: Heat Conduction

• MOOSE Modules’ heat conduction routines are built to help solve

ρCp
∂T
∂t
−∇ · k∇T − q = 0

where ρ is the mass density, Cp is the specific heat, T is the temperature, k
is the thermal conductivity, and q is the volumetric heat generation rate.

• MOOSE Modules provides spherically symmetric 1D, axisymmetric 2D, and
3D formulations. Either first or second order elements may be used
(QUAD4 or QUAD8 for RZ, HEX8 or HEX20 for 3D).

36 / 271

Modules: Heat Conduction

ρCp
∂T
∂t
−∇ · k∇T − q = 0

T |∂Ω1 = g1

∇T · n̂|∂Ω2 = g2

• Multiply by test function, integrate(
ψi , ρCp

∂T
∂t

)
− (ψi ,∇ · k∇T)− (ψi , q) = 0

• Integrate by parts(
ψi , ρCp

∂T
∂t

)
+ (∇ψi , k∇T)− (ψi , q)− 〈ψi , g2〉 = 0

• Jacobian (
ψi , ρCp

∂

∂T

(
∂T
∂t

)
φj

)
+ (∇ψi ,∇kφj)

37 / 271

The Input File

• To solve these PDEs, we need to create an input file that contains all the
necessary information.

• By default MOOSE uses a hierarchical, block-structured input file.

• Within each block, any number of name/value pairs can be listed.

• The syntax is completely customizable, or replaceable.

• To specify a simple problem, you will need to populate five or six top-level
blocks.

• We will briefly cover a few of these blocks in this section and will illustrate
the usage of the remaining blocks throughout this manual.

38 / 271

The Required Blocks of an Input File

• [Mesh] - the domain of the problem

• [Variables] - temperature and displacement

• [Kernels] - heat conduction, solid mechanics

• [Materials] - used by kernels, e.g. thermal conductivity

• [BCs] - specify Dirichlet or Neumann

• [Executioner] - steady state or transient

• [Outputs] - set options for how you want the output to look.

39 / 271

Example Input File
The following input file is an example of how to solve the heat conduction equation with a source term.

[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10

[]

[Variables]
[./temp]
[../]

[]

[Kernels]
[./heat_conduction]

type = HeatConduction
variable = temp

[../]
[./heat_source]

type = HeatSource
variable = temp
value = 10000

[../]
[]

[Materials]
[./heat_conductor]

type = HeatConductionMaterial
thermal_conductivity = 1
block = 0

[../]
[]

[BCs]
[./leftright]

type = DirichletBC
variable = temp
boundary = ’left right’
value = 200

[../]
[]

[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type’
petsc_options_value = ’hypre boomeramg’

[]

[Outputs]
exodus = true
[./console]

type = Console
perf_log = true

[../]
[]

[Postprocessors]
[./peak_temp]

type = NodalMaxValue
variable = temp

[../]
[]

40 / 271

Mesh Block

[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10

[]

• The FEM mesh is defined in
the Mesh block.

• A mesh can be read in from a
file. There are many accepted
formats (see the MOOSE
manual). We typically use the
exodus file format and create
meshes with CUBIT.

• Simple meshes can also be
generated within the input file.
We’ll use this approach for our
first examples.

• The sides of a
GeneratedMesh are named
in a logical way (bottom, top,
left, right, front, and back).

41 / 271

Variables Block

[Variables]
[./temp]
[../]

[]

T

• The primary or dependent
variables in the PDEs
(temperature, displacement)
are defined in the Variables
block.

• A user-selected unique name
is assigned for each variable.

42 / 271

Kernels Block

[Kernels]
[./heat_conduction]

type = HeatConduction
variable = temp

[../]
[./heat_source]

type = HeatSource
variable = temp
value = 10000

[../]
[]

−∇ · k∇T − q = 0

• The kernels (individual terms in
the PDEs being solved) are
listed in the Kernels block.

• Each kernel is assigned a
specific variable (in this case,
temp or temperature).

43 / 271

Materials Block

[Materials]
[./heat_conductor]

type = HeatConductionMaterial
thermal_conductivity = 1
block = 0

[../]

k = 1

• Material properties are defined
in the Materials block.
Information from the materials
block is used by some kernels.

• Here, thermal conductivity is
defined to be used by the
HeatConduction kernel.

44 / 271

Boundary Conditions (BCs) Block

[BCs]
[./leftright]

type = DirichletBC
variable = temp
boundary = ’left right’
value = 200

[../]
[]

Define temperature on boundary

• Boundary conditions are
defined in the BCs block.

• Many types of boundary
conditions can be applied.

• For this simple example, the
temperature is set on the left
and right sides of the domain.

45 / 271

Executioner Block

[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type’
petsc_options_value = ’hypre boomeramg’

[]

• The Executioner block
defines how the problem is
solved.

• You define here the type of
solution (transient or
steady state).

• The parameters
solve type and
petsc options will be
discussed later.

46 / 271

Outputs Block

[Outputs]
exodus = true
[./console]

type = Console
perf_log = true

[../]
[]

• The results you will output
from your simulation are
defined in the Outputs
block.

• This includes defining the
file type (exodus file here).

• Performance logs are also
defined.

47 / 271

Postprocessors Block

[Postprocessors]
[./peak_temp]

type = NodalMaxValue
variable = temp

[../]
[]

• Analysis results in the form
of single scalar values are
defined in the
Postprocessors block.

• May operate on elements,
nodes, or sides of the
model.

• Examples include
NodalMaxValue,
AverageElementSize,
and SideAverageValue.

48 / 271

Run Problem and Look at Results with Paraview

• The problems shown here can be run either with an application such as
BISON that links in the heat conduction module, or with the MOOSE
combined module executable.

• To run with the MOOSE combined modules executable, run:
∼/projects/moose/modules/combined/modules-opt -i
heat cond.i

• To run with an application (BISON example shown here), run:
∼/projects/bison/bison-opt -i heat cond.i

• These examples assume your code is in the ∼/projects directory.
Substitute in an appropriate path if it is located elsewhere.

49 / 271

Heat Conduction with Source: Results

50 / 271

Modules: Solid Mechanics

• MOOSE Modules’ solid mechanics routines are built to help solve

∇ · σ + b = 0

where σ is the stress and b is a body force.

• MOOSE Modules also supplies boundary conditions useful for solid
mechanics (such as pressure).

• MOOSE Modules provides spherically symmetric 1D, axisymmetric 2D
(typically linear), and 3D fully nonlinear formulations. Either first or second
order elements may be used (QUAD4 or QUAD8 for RZ, HEX8 or HEX20
for 3D).

51 / 271

Modules: Solid Mechanics

∇ · σ + b = 0

u|∂Ω1 = g1

σ · n̂|∂Ω2 = g2

• Multiply by test function, integrate

(ψi ,∇ · σ) + (ψi , b) = 0

• Integrate by parts

−(∇ψi ,σ) + (ψi , b) + 〈ψi , g2〉 = 0

• σ = Cε
−(∇ψi ,Cε) + (ψi , b) + 〈ψi , g2〉 = 0

52 / 271

Modules: Solid Mechanics: Spherically Symmetric 1D

• The 1D, 2D, and 3D classes have much in common.
• The calculation of the strain is of course different for the three formulations.

However, they share material models.
• The spherically symmetric 1D strain is

εrr = ur,r

εzz = ur/r

εθθ = ur/r

• The mesh for spherically symmetric 1D is defined such that the x
coordinate corresponds to the radial direction.

• No displacement in the x (radial) direction must be explicitly enforced in the
input file for nodes at x=0.

53 / 271

Modules: Solid Mechanics: Axisymmetric 2D

• The axisymmetric 2D strain is

εrr = ur,r

εzz = uz,z

εθθ = ur/r

εrz = (ur,z + uz,r)/2

• The mesh for RZ is defined such that the x coordinate corresponds to the
radial direction and the y coordinate with the axial direction.

• No displacement in the x (radial) direction must be explicitly enforced in the
input file for nodes at x=0.

54 / 271

Modules: Solid Mechanics: Nonlinear 3D

F = ∇x = ∇u + I = RU

• The nonlinear kinematics
formulation in MOOSE
Modules accommodates
both large strains and large
rotations.

• The deformation gradient
F can be viewed as the
derivative of the current
coordinates wrt the original
coordinates. F can be
decomposed into pure
rotation R and pure stretch
U.

55 / 271

Modules: Solid Mechanics: 3D

• We begin with a complete set of data for step n and seek the
displacements and stresses at step n + 1. We first compute an incremental
deformation gradient,

F̂ =
∂xn+1

∂xn .

• With F̂, we next compute a strain increment that represents the
rotation-free deformation from the configuration at n to the configuration at
n + 1. Following [1], we seek the stretching rate D:

D =
1

∆t
log(Û)

=
1

∆t
log
(

sqrt
(

F̂T F̂
))

=
1

∆t
log
(

sqrt
(

Ĉ
))

.

• Here, Û is the incremental stretch tensor, and Ĉ is the incremental Green
deformation tensor. Through a Taylor series expansion, this can be
determined in a straightforward, efficient manner.

56 / 271

Modules: Solid Mechanics: 3D

• D is passed to the constitutive model as an input for computing σ at n + 1.

• The next step is computing the incremental rotation, R̂ where F̂ = R̂Û. Like
for D, an efficient algorithm exists for computing R̂. It is also possible to
compute these quantities using an eigenvalue/eigenvector routine.

• With σ and R̂, we rotate the stress to the current configuration.

F̂ = f (x)

D = f (F̂)

R̂ = f (F̂)

∆σ = f (D,σn)

σn+1 = R̂(σn + ∆σ)R̂T

57 / 271

Modules: Solid Mechanics: Material Models

• The material models for 1D, axisymmetric 2D, and 3D are formulated in an
incremental fashion (think hypo-elastic).

• Thus, the stress at the new step is the old stress plus a stress increment:

σn+1 = σn + ∆σ.

• The incremental formulation is particularly useful for plasticity and creep
models.

58 / 271

Let’s add some more physics... Solid Mechanics!
The following blocks have to be added or modified to our input file if we want to include solid mechanics behaviior.

[Variables]
[./temp]
[../]
[./disp_x]
[../]
[./disp_y]
[../]

[]

[SolidMechanics]
[./solid]

disp_x = disp_x
disp_y = disp_y
temp = temp

[../]
[]

[Materials]
[./heat_conductor]

type = HeatConductionMaterial
thermal_conductivity = 1
block = 0

[../]
[./constant]

type = LinearIsotropicMaterial
block = 0
youngs_modulus = 1e6
poissons_ratio = .3
thermal_expansion = 1e-4
t_ref = 200
disp_x = disp_x
disp_y = disp_y
temp = temp

[../]
[]

[BCs]
[./leftright_temp]

type = DirichletBC
variable = temp
boundary = ’left right’
value = 200

[../]
[./leftright_disp_x]

type = DirichletBC
variable = disp_x
boundary = ’left right’
value = 0

[../]
[./bottom_disp_y]

type = DirichletBC
variable = disp_y
boundary = bottom
value = bottom

[../]
[]

59 / 271

Heat Conduction + Solid Mechanics: Results

60 / 271

Modules: Contact: Finite Element Contact Basics

• A contact capability in a solid
mechanics finite element code
prevents the penetration of one
domain into another or part of
one domain into itself.

Ω(1)

Ω(2)

t(1)

t(2)

61 / 271

Modules: Contact: Required Capabilites

A Necessary but Insufficient List:

• Search
– Exterior identification
– Nearby nodes

• Capture box
• Binary search, e.g.

– Contact existence
• More geometric work
• Penetration point

• Enforcement
– Formulation of contact force
– Formulation of Jacobian
– Interaction with other

capabilities (e.g., kinematic
boundary conditions)

Development, testing, and application testing of contact require many, many
man-months of effort. In fact, it is probably man years.

62 / 271

Modules: Contact: Overview

• In node-face contact, nodes
(green) may not penetrate
faces (defined by orange
nodes).

• Forces must be determined to
push against the two
contacting bodies.

• No force should be applied
where the bodies are not in
contact.

• The contact forces must
increase from zero as the
bodies first come into contact.

63 / 271

Modules: Contact: Constraints

• g ≤ 0; the gap (penetration
distance) must be non-positive

• tN ≥ 0; the contact force must
push bodies apart

• tNg = 0; the contact force must
be zero if the bodies are not in
contact

• tN ġ = 0; the contact force must
be zero when constraints are
formed and released

• The gap in the normal direction
for constraint i is (n is the
normal, N denotes normal
direction, ds is position of the
slave node, dc is position of the
contact point, and G is a
matrix):

g i
N = ni (d i (t)− d i

c(t))

g i
N = Gi

N(d(t))

tN

g

64 / 271

Modules: Contact: Contact Options

• formulation: kinematic or
penalty

– Kinematic is more accurate
but also harder to solve.

• model: frictionless,
glued, or coulomb

– Frictionless enforces the
normal constraint and allows
nodes to come out of contact
if they are in tension. Glued
ties nodes where they come
into contact with no release.
Coulomb is frictional contact
with release.

• friction coefficient
– Coulomb friction coefficient.

• penalty
– The penalty stiffness to be

used in the constraint.

• master
– The surface corresponding to the

faces in the constraint.
• slave

– The surface corresponding to the
nodes in the constraint.

• normal smoothing distance
– Distance from face edge in

parametric coordinates over which
to smooth the normal. Helps with
convergence. Try 0.1.

• tension release
– The tension value which will allow

nodes to be released. Defaults to
zero.

65 / 271

Even more physics... CONTACT
The following blocks have to be added or modified to our input file if we want to include the effects of mechanical
contact.

[Mesh]
file = contact.e
displacements = ’disp_x disp_y’

[]

[Functions]
[./source]
type = PiecewiseLinear
x = ’0 1’
y = ’0 1’
[../]

[]

[Kernels]
.

[./heat_source]
type = HeatSource
variable = temp
value = 1500
function = source
block = 2

[../]
.
[Contact]

[./mechanical]
master = 1
slave = 7
disp_x = disp_x
disp_y = disp_y
penalty = 1e7
tangential_tolerance = 0.1

[../]
[]

[BCs]
.
.

[./bottom_disp_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0

[../]
[./bottom_disp_y_upper]

type = DirichletBC
variable = disp_y
boundary = ’5 6 8’
value = 0

[../]
.
.
[]
[Executioner]

type = Transient
#Preconditioned JFNK (default)
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type’
petsc_options_value = ’hypre boomeramg’
dt = 0.1
dtmin = 0.01
num_steps = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8

[]

66 / 271

Heat Conduction + Mechanics + Contact: Results

• q = 600
• Bottom block heats

and expands
upward, but is not
yet in contact

• Blocks do not
communicate
thermally (no gap
heat transfer)

67 / 271

Heat Conduction + Mechanics + Contact: Results

• q = 1500
• Further heating

and upward
expansion brings
blocks into contact,
first at the center
where the bottom
block is hottest

• Still, blocks do not
communicate
thermally (no gap
heat transfer)

68 / 271

Heat Conduction + Mechanics + Contact: Results

• q = 600
• Bottom block heats

and expands
upward, but is not
yet in contact

• Vertical
displacement plots
show curvature of
top surface

69 / 271

Heat Conduction + Mechanics + Contact: Results

• q = 1500
• Contour scale is

set to show
displacement in
top block resulting
from mechanical
contact

70 / 271

Modules: Heat Conduction: Gap Heat Transfer

• The principle is that the heat leaving one body must equal that entering
another. For bodies i and j with heat transfer surface Γ:∫

Γi

h∆TdAi =

∫
Γj

h∆TdAj

• Gap heat transfer is modeled using the relation,

hgap = hg + hs + hr

where hgap is the total conductance across the gap, hg is the gas
conductance, hs is the increased conductance due to solid-solid contact,
and hr is the conductance due to radiant heat transfer.

• In MOOSE Modules, only the gas conductance hg is active by default.
• The form of hg in MOOSE Modules is

hg =
kg

dg

where kg is the conductivity in the gap and dg is the gap distance.

71 / 271

Adding Thermal Contact

[ThermalContact]
[./thermal_contact]

type = GapHeatTransfer
variable = temp
master = 1
slave = 7
gap_conductivity = 1

[../]
[]

h =
kg

dg

72 / 271

Heat Conduction + Mechanics + Contact + Thermal
Contact: Results

• q = 750
• Heat tranfer occurs

through the gap medium
prior to mechanical contact

73 / 271

Heat Conduction + Mechanics + Contact + Thermal
Contact: Results

• q = 1330
• Combined thermal and

mechanical contact

74 / 271

Fuels Specific Models

Fuels Specific Models

• BISON consists, in addition to the capability in MOOSE, of material models
specific to nuclear fuels:

– Fission gas release
– Material models that are functions of irradiation

• creep
• thermal conductivity
• relocation

– Other models that capture fuel behavior, like radial and axial power profiles
– Gap heat transfer in LWR fuel

• This section highlights some of these models.

76 / 271

Fission Gas Behavior

77 / 271

BISON Fission Gas Model

• Physics-based model which describes the different
stages of fission gas behavior

– Gas generation
– Intra-granular diffusion to grain boundaries
– Bubble development at grain boundaries and

associated fuel swelling
– Fission gas release due to grain boundary saturation
– Fission gas release due to micro-cracking

• Current results are state-of-the-art or better

78 / 271

Material Models that Depend on Irradiation or Power

• Zirconium, mechanics example

ε̇ir = C0ΦC1σm
C2 (1)

where ε̇ir is the effective irradiation creep rate (1/s), Φ is the fast neutron
flux (n/m2-s), σm is the effective (Mises) stress (MPa), and C0, C1, and C2

are material constants.
• UO2, thermal conductivity example

k95 = kphonon + kelectronic (2)

The terms in Equation 2 are functions of burnup and temperature.
• Relocation(

∆D
Do

)
REL

= 0.80Q
(

Go

Do

)(
0.005Bu0.3 − 0.20Do + 0.3

)
(3)

This relocation model is a function of power(Q), as-fabricated pellet
diameter(Do), as-fabricated gap thickness (Go), and burnup.

79 / 271

Power Profiles

• Radial power profile example

• Don’t forget the axial profile

80 / 271

LWR Gap Heat Transfer

• In BISON hg and hs are described using the
form proposed by Ross and Stoute [2]. hg is
defined as

hg =
kg(Tg)

dg + Cr (r1 + r2) + g1 + g2

where kg is the conductivity of the gas in the
gap, dg is the gap width, Cr is a roughness
coefficient, r1 and r2 are roughnesses of the
surfaces, and g1 and g2 are jump distances,
which become important for small gap widths
and low gas pressures. The jump distances
provide a reduction in gap conductance
when the mean free path of the gas
molecules is significant in comparison to the
gap width, and the continuum approximation
is no longer valid. The gas temperature (Tg)
is the average of the two surfaces.

81 / 271

LWR Gap Heat Transfer

• hs is defined as

hs = Cs
2k1k2

k1 + k2

Pc

δ1/2H

where Cs is an empirical constant, k1

and k2 are the thermal conductivities of
the two materials, Pc is the contact
pressure, δ is the average gas film
thickness (approximated as 0.8(r1 +
r2)), and H is the Meyer hardness of
the softer material.

82 / 271

BISON Gap Heat Transfer (continued)

• In BISON hr is computed using a diffusion approximation. Based on the
Stefan-Boltzmann law,

qr = σFe(T 4
1 − T 4

2)≈ hr (T1 − T2)

where σ is the Stefan-Boltzmann constant, Fe is an emissivity function, and
T1 and T2 are the temperatures of the radiating surfaces.

• The radiant conductance is approximated as

hr ≈ σFe(T 4
1 − T 4

2)/(T1 − T2)

which can be reduced to

hr = σFe(T 2
1 + T 2

2)(T1 + T2).

For infinite parallel plates,

Fe = 1/(1/ε1 + 1/ε2 − 1)

where ε1 and ε2 are the emissivities of the
radiating surfaces. This is the specific
function implemented in BISON.

!
 !
!
 !
!
 !

ε1!

ε2!

Fuel!

Fuel!

Clad!Clad!

83 / 271

Example Problem

Axisymmetric 10 Pellet LWR Fuel Rodlet

85 / 271

Overview of the Example Problem

• In this section, we will review the syntax found in an example problem.

• The full input file is at
bison/examples/2D-RZ rodlet 10pellets/inputQuad8.i.

• The input file syntax consists of blocks where the PDEs you are solving are
defined.

86 / 271

High-level Description of the Input File

• The input file is the place where you specify all the terms of your PDE(s)
and supporting information to solve them. This is a different mindset than
that used when running other simulation software.

• Things you define here are:
– Mesh
– Global Parameters (density and FE specification)
– Coordinate system (RZ)
– Physics kernels (individual terms in the PDE you’re solving)
– Source term (power)
– Boundary Conditions (convection coefficient and displacement BCs)
– Material models (UO2 and Zr)
– AuxKernels - Auxillary equations that you want to solve that may be used as

input to Kernels or BCs or just for visualization
– Post Processors (plenum pressure and average power)

• What’s the minimum input file content requirement for running a problem?
That depends on what PDE(s) you are solving and the information needed
to support those solves.

87 / 271

BISON Conventions

• BISON uses several empirical models that were developed with a certain
set of units.

• BISON converts from the input units to the units needed by each empirical
model.

• The input units for BISON are:
– meter, kilogram, second, kelvin, mole

• BISON uses FIMA (fissions per initial metal atom) to describe burnup.
• The coordinate convention for LWR analysis is that the rod axis

corresponds to the y-axis in the global coordinate system. For
axisymmetric RZ analyses, this implies that the r-direction (radial direction)
corresponds to the x-axis and the z-direction corresponds to the y-axis.

88 / 271

Common Kernels

Kernels often found in a BISON input file include

• HeatConduction
– Gradient term in heat

conduction equation
• HeatConductionTimeDerivative

– Time term in heat conduction
equation

• NeutronHeatSource
– Source term in heat conduction

equation

• ArrheniusDiffusion
– Arrhenius equation for mass

diffusion
• HeatSource

– General source term for heat
conduction or mass diffusion.
For example, this could be used
as an alternative to
NeutronHeatSource.

• Gravity
• Decay

– Sink term for mass diffusion or
heat conduction

89 / 271

Common AuxKernels

AuxKernels often found in a BISON input file include

• FastNeutronFluxAux
– Compute fast flux based on

power
• FastNeutronFluenceAux

– Compute fast fluence based on
fast flux

• MaterialTensorAux
– Compute volume-averaged

stress and strain

• FissionRateAux
– Compute fission rate based on

power
– Not used if the Burnup block is

used
• BurnupAux

– Compute burnup based on
fission rate

– This is not the same as the
Burnup block

– Not used if the Burnup block is
used

90 / 271

Common Materials

Materials often found in a BISON input include

• ThermalFuel
– Compute thermal conductivity

and specific heat for fuel
• HeatConductionMaterial

– Set thermal conductivity and
specific heat for a general
material

• Density
– Compute density, which may

change due to deformation
• CreepUO2

– Creep model for fuel

• MechZry
– Primary and secondary thermal

and irradiation creep model for
clad

• VSwellingUO2
– Densification and solid and

gaseous swelling for fuel clad
• RelocationUO2

– Relocation model for fuel
• Sifgrs

– Fission gas release model. Also
has option for calculating
gaseous swelling.

Note that some of these models are empirical and have a limited ranges of
applicability.

91 / 271

Common BCs

BCs often found in a BISON input file include

• DirichletBC and PresetBC
– Set dirichlet BCs

• FunctionDirichletBC and
FunctionPresetBC

– Set dirichlet BCs based on a
function

• NeumannBC
– Set gradient of a variable

• Pressure
– Set pressure on a surface
– Note that this block requires

subblocks
• PlenumPressure

– Set pressure on interior of clad,
exterior of fuel

– Note that this block requires
subblocks

92 / 271

Common Postprocessors

Postprocessors often found in a BISON input file include

• SideAverageValue
– Compute the area-weighted

average of a variable
• InternalVolume

– Compute the volume of a closed
sideset

• SideFluxIntegral
– Integrated flux over an area

• TimestepSize
– Report the time step size

• ElementIntegralPower
– Total power by integrating the

fission rate over all elements
• FunctionValuePostprocessor

– Value of a time-varying function

93 / 271

Other Common Blocks

Other blocks often found in a BISON input file include

• Burnup
– Compute the fission rate and

burnup including the radial
power profile effect

– Note that this block requires
subblocks

• Contact
– Enforce mechanical contact

constraints
– Note that this block requires

subblocks
• ThermalContact

– Enforce gap heat transfer
– Note that this block requires

subblocks

• SolidMechanics
– Divergence of stress in Cauchy’s

equation
– SolidMechanics appears as its

own block outside of Kernels
• CoolantChannel

– Compute a convective boundary
condition for the clad

– Note that this block requires
subblocks

• Executioner
– Specify solver options and time

stepping controls
• Outputs

– Specify output options

94 / 271

Overview of Input File Format

It is common to refer to a section of
the input file within an opening/closing
pair of square brackets as a ’block’.

[CategoryA]
[./name1]

type = Type1
param1 = a_string_param
param2 = ’1 3 4’ # a list

[../]
[./name2]

type = Type2
param = 3.14

[../]
[]

[CategoryB]
[./name3]

type = Type3
param = false

[../]
[]

Input files for MOOSE applications
follow the basic pattern here. On
any line, any text following a ‘#’ is
considered a comment. Major
categories (such as Kernels, BCs,
Materials, etc.) are identified within
square brackets and are closed
with empty square brackets. Each
specific instance of a given
category begins with ‘[./<name>]’
and ends with ‘[../]’. Parameters are
given as key/value pairs separated
with an equal sign. If the value is a
list, the list is enclosed in single
quotes.

95 / 271

Input Syntax

If you have questions about input syntax or what options are available for
parameters.
Type: > ∼/projects/bison/bison-opt --dump
<Parameter in question>
Example: > ∼/projects/bison/bison-opt --dump Postprocessors

96 / 271

Blocks, sidesets, and nodesets

Some conventions to keep in mind as you look at the input file and consider
blocks, sidesets, and nodesets in reference to BCs, source terms, and material
models.

Blocks	

Block	
 1:	
 Cladding	

Block	
 2:	
 Liner	
 (if	
 present)	

Block	
 3+:	
 	
 Fuel	

Use	
 ‘clad’,	
 ‘liner’,	

‘pellet_type_1’,	

‘pellet_type_2’,	
 etc.	

1	

Sideset	
 7:	
 Cladding	
 Interior	

Sideset	
 8:	
 All	
 pellet	
 exteriors	

Sideset	
 9:	
 Union	
 of	
 7	
 &	
 8	

Sideset	
 10:	
 Outer	
 Radial	
 Surface	
 of	
 Pellets	

Sideset	
 11:	
 Top	
 Pellet	
 Top	

Sideset	
 12:	
 Centerline	
 (for	
 RZ)	

Sideset	
 13:	
 Inner	
 Radial	
 Surface	
 of	
 Pellets	

2	

3	

4	

5	

6	

20	

21	

22	

23	

Sidesets	

1001	

NS	
 1004:	
 All	
 central	
 nodesets	

NS	
 1005:	
 All	
 central	
 pellet	
 nodesets	

NS	
 2000:	
 BoVom	
 Center	
 Meso	

NS	
 2001:	
 BoVom	
 Outer	
 Meso	

NS	
 2002:	
 Middle	
 Center	
 Meso	

NS	
 2003:	
 Middle	
 Outer	
 Meso	

NS	
 3000:	
 Top	
 Center	
 Pellet	

NS	
 3002:	
 (x=<max>,	
 y=0,	
 z=*)	

1003	

1020	

1021	

1022	

1023	

Nodesets	

3001	

97 / 271

The GlobalParams Block

[GlobalParams]
density = 10431.0
disp_x = disp_x
disp_y = disp_y
order = SECOND
family = LAGRANGE
J/fission
energy_per_fission = 3.2e-11

[]

The GlobalParams block sets
parameters that can be used by any
other block. We can set parameters
here instead of setting them many
times in the remainder of the file.
Here, we set the value of density,
displacement solution variables,
and variable order and family. The
Variables block did not contain
any lines for order and family. The
GlobalParams contains them,
and so they are not needed in the
Variables block. The
GlobalParams block is often listed
first, but can occur anywhere within
the input file.

98 / 271

The Problem Block

[Problem]
coord_type = RZ

[]

This block needs to be included for
an axisymmetric analysis. It tells
BISON that all of the boundary
conditions, kernels, and material
models should be evaluated in
axisymmetric coordinates. Similarly
coord type can be set to
RSPHERICAL to specify a 1D
spherically symmetric analysis.

99 / 271

The Mesh Block

[Mesh]
file = quad8Medium10_rz.e
displacements = ’disp_x disp_y’
patch_size = 10

[]

Mesh parameters are defined in this
block. The following parameters are
defined in this particular block:
• file: defines the name of the

finite element mesh file
• displacements: lists the

names of the displacement
variables (needed for large
displacement, contact)

• patch size: used by contact
to define the number of nearest
neighbor nodes

MOOSE also includes capability to
build simple meshes (e.g., smeared
pellet) from within the input file.

100 / 271

The Variables Block

[Variables]
[./disp_x]
[../]

[./disp_y]
[../]

[./temp]
set initial temp to fill gas

temperature, usually 20C
initial_condition = 293

[../]
[]

Dependent variables and initial
conditions are examples of
parameters defined in the variables
block. Notice there are sub-blocks,
whose names correspond to the
dependent variables.

101 / 271

The AuxVariables Block

[AuxVariables]
[./fast_neutron_flux]

block = clad
[../]

[./fast_neutron_fluence]
block = clad

[../]
[]

What are AuxVariables? They are
variables in addition to the
dependent variables that allow
explicit calculations. These can be
used by kernels, boundary
conditions, and material properties.
AuxVariables are written to the
output file. You can define two
types of AuxVariables ... Element
(constant monomial) or Nodal
(linear Lagrange). AuxVariables
have old states, just like the
dependent variables. Some
parameters you can set in this block
are order (e.g. linear), family
(e.g. Lagrange), and block. The
block parameter specifies which
blocks of the finite element mesh
have the named AuxVariable.

102 / 271

The AuxVariables Block - continued

[./stress_xx]
order = CONSTANT
family = MONOMIAL

[../]

If you want to make contour plots of
stress in the x direction, you have to
include this sub-block. When you
use order = CONSTANT and
family = MONOMIAL, you will get
an average of the integration point
values at each element. If you use
order = FIRST, family =
LAGRANGE, values at nodes are
written to the output file. CONSTANT
MONOMIAL is the appropriate
choice for stresses.

103 / 271

The Functions Block

[Functions]
[./power_profile]

type = PiecewiseLinearFile
data_file = powerhistory.csv
scale_factor = 1

[../]
[./axial_peaking_factors]

type = PiecewiseBilinear
data_file = peakingfactors.csv
scale_factor = 1
axis = 1 # (0,1,2) => (x,y,z)

[../]
[./pressure_ramp]

type = PiecewiseLinear
x = ’-200 0’
y = ’ 0 1’

[../]
[./q]

type = CompositeFunction
functions = ’power_history

axial_peaking_factors’
[../]

[]

Functions can be used to define
inputs to the simulation, such as
power history, power factors, and
pressure boundary conditions, to
name a few. Notice some of the
parameters you can specify, such
as type (defines the function type),
data file (specifies the name of
a data file), or value (sets the
value of the function).

104 / 271

The Kernels Block ... and a note about Actions

[SolidMechanics]
[./solid]

disp_r = disp_x
disp_z = disp_y
temp = temp

[../]
[]
[Kernels]
for stress equilibrium equation

[./gravity]
type = Gravity
variable = disp_y
value = -9.81

[../]
for heat conduction equation

[./heat]
type = HeatConduction
variable = temp

[../]
for heat conduction equation

[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp

[../]
[]

Here’s an example of a Kernel
block. Notice that there’s a block
above the Kernel block called
SolidMechanics. The
SolidMechanics block defines the
kernels relative to stress
divergence. It has its own block to
cut down on redundancy in the
input file. Such a block is built using
Actions from MOOSE. Future
development work includes
removing the requirement to specify
kernels for a typical fuels problem
(because they are the same every
time) and only specifing the unique
parameters for a particular
simulation.

105 / 271

Kernels ... continued

[Kernels]
[./gravity]

type = Gravity
variable = disp_y
value = -9.81

[../]
[./heat]

type = HeatConduction
variable = temp

[../]
[./heat_ie]

type = HeatConductionTimeDerivative
variable = temp

[../]
[./heat_source]

type = NeutronHeatSource
variable = temp
block = pellet_type_1
fission_rate = fission_rate

[../]
[]

Recall that kernels are used to
define the various terms in the PDE
set that you are solving. Each
kernel is a term in the PDE. For
example, the kernel gravity is the
body force term in the stress
divergence equation, heat is the
gradient term in the heat conduction
equation, heat ie is the time term,
and heat source is the source
term. Note that heat source is
coupled to fission rate (an Aux
Variable) and applied only in block 2
(the fuel). The required parameters
are type (the actual name of the
kernel) and variable
(temperature or displacement).

106 / 271

Burnup Block

[Burnup]
[./burnup]

block = pellet_type_1
rod_ave_lin_pow = power_history
axial_power_profile = axial_peaking_factors
num_radial = 80
num_axial = 11
a_lower = 2.26e-3
a_upper = 1.2086e-1
fuel_inner_radius = 0
fuel_outer_radius = .0041
ratio of actual volume to cylinder volume:
fuel_volume_ratio = 0.987775
#N235 = N235
#N238 = N238
#N239 = N239
#N240 = N240
#N241 = N241
#N242 = N242
RPF = RPF

[../]
[]

The Burnup block supplies
input for computing burnup and
fission rate based on the power
history, the axial profile, and a
radial power factor. The radial
power factor is computed at grid
points independent of the finite
element mesh. The density of
these points can be controlled
with the num radial and
num axial parameters. The
parameters N235 through RPF
are optional and specify that the
associated isotope
concentrations and radial power
factor value should be written to
the results file.

107 / 271

AuxKernels Block

[AuxKernels]
[./fast_neutron_flux]

type = FastNeutronFluxAux
variable = fast_neutron_flux
block = clad
rod_ave_lin_pow = power_profile
axial_power_profile = axial_peaking_factors
factor = 3e13
execute_on = timestep_begin

[../]

[./fast_neutron_fluence]
type = FastNeutronFluenceAux
variable = fast_neutron_fluence
block = clad
fast_neutron_flux = fast_neutron_flux
execute_on = timestep_begin

[../]
[]

Here’s an example of an
AuxKernel block. Only fast
neutron flux and fluence are
shown here, but others may be
used. Remember that every
AuxVariable requires a
corresponding AuxKernel.
Important parameters include
type (the kind of AuxKernel),
variable (the AuxVariable to
use), block (gives which mesh
block the AuxKernel acts on),
and execute on, which
specifies at which point in the
algorithm the AuxKernel
executes. Other inputs include
functions (e.g., to define the rod
average linear power) and
constants required for particular
AuxKernels.

108 / 271

AuxKernels Block ... continued

[AuxKernels]
[./fast_neutron_flux]

type = FastNeutronFluxAux
variable = fast_neutron_flux
block = clad
rod_ave_lin_pow = power_profile
axial_power_profile = axial_peaking_factors
factor = 3e13
execute_on = timestep_begin

[../]

[./fast_neutron_fluence]
type = FastNeutronFluenceAux
variable = fast_neutron_fluence
block = clad
fast_neutron_flux = fast_neutron_flux
execute_on = timestep_begin

[../]
[]

Also note that one of the
parameters in the
fast neutron fluence block
is fast neutron flux. So,
the AuxVariable
fast neutron fluence is a
function of the AuxVariable
fast neutron flux.

109 / 271

AuxKernels Block ... continued ... again

[./vonmises]
type = MaterialTensorAux
tensor = stress
variable = vonmises
quantity = vonmises

[../]

Recall that
AuxVariables/AuxKernels are also
used to write results to the output
file. If this block is included in the
AuxKernels block, and vonmises
is defined in the AuxVariables block,
then von Mises stress will be
available to visualize in the output
file.

110 / 271

Contact

[Contact]
[./pellet_clad_mechanical]

master = 5
slave = 10
disp_x = disp_x
disp_y = disp_y
system = constraint
penalty = 1e7
[../]

[]
[ThermalContact]

[./thermal_contact]
type = GapHeatTransferLWR
variable = temp
master = 5
slave = 10
initial_moles = initial_moles
gas_released = fis_gas_released
contact_pressure = contact_pressure
quadrature = true

[../]
[]

The Contact block defines
mechanical contact between the
fuel (side set 10, slave) and the clad
(side set 5, master). The
displacement solution variables are
parameters. penalty is the
stiffness of a constraint that
prevents the surfaces from
penetrating by applying a normal
force along the contact surface.

111 / 271

Contact ... continued

[Contact]
[./pellet_clad_mechanical]

master = 5
slave = 10
disp_x = disp_x
disp_y = disp_y
system = constraint
penalty = 1e7
[../]

[]
[ThermalContact]

[./thermal_contact]
type = GapHeatTransferLWR
variable = temp
master = 5
slave = 10
initial_moles = initial_moles
gas_released = fis_gas_released
quadrature = true

[../]
[]

The thermal contact block specifies
contact between the fuel (side set
10) and the clad (side set 5). The
temperature variable must be given.
initial moles couples to a
Postprocessor that supplies the
initial plenum/gap gas mass, and
gas released couples to a
Postprocessor that supplies the
fission gas addition to the gap
thermal conductance equation.
More on Postprocessors later.

112 / 271

Boundary Conditions Block

[BCs]
[./Pressure]

[./coolantPressure]
boundary = ’1 2 3’
factor = 15.5e6
function = pressure_ramp

[../]
[../]

[]

This block describes the coolant
pressure on the outside of the clad.
Notice the parameter function
that refers to a function defined in
the Functions block. The parameter
factor scales the pressure ramp
function to complete the
specification of pressure on the
clad exterior.

113 / 271

Boundary Conditions Block ... continued

[BCs]
[./PlenumPressure]

[./plenumPressure]
boundary = 9
initial_pressure = 2.0e6
startup_time = 0
R = 8.3143
output_initial_moles = initial_moles
temperature = ave_temp_interior
volume = gas_volume
material_input = fis_gas_released
output = plenum_pressure
displacements = ’disp_x disp_y’

[../]
[../]

[]

The plenum pressure block defines the
pressure on the inside of the clad and
outside of the fuel using the ideal gas
law. initial pressure sets the
value of the fill gas pressure. R is the
universal gas constant. The other
parameters are links to Postprocessors
that provide input to this boundary
condition. The parameter output
writes the magnitude of the plenum
pressure to a Postprocessor called
plenum pressure.

114 / 271

Coolant Channel Block

[CoolantChannel]
[./convective_clad_surface]

boundary = ’1 2 3’
variable = temp
inlet_temperature = 580 # K
inlet_pressure = 15.5e6 # Pa
inlet_massflux = 3800 # kg/mˆ2-sec
rod_diameter = 0.948e-2 # m
rod_pitch = 1.26e-2 # m
linear_heat_rate = power_profile
axial_power_profile = axial_peaking_factors

[../]
[]

This block specifies the convection
of the coolant on the outside of the
clad. boundary defines the side
sets where the BC is applied. In
this BC, inlet temperature,
pressure, and mass flux are
required. Rod diameter and pitch
are also needed. Finally, the time
varying power profile and axially
varying factors are given.

115 / 271

Material Properties/Models Block

[Materials]
[./fission_gas_release]

type = Sifgrs
block = pellet_type_1
temp = temp

coupling to fission_rate aux variable
fission_rate = fission_rate
gbs_model = true

[../]

There are many thermal and solid
mechanics material models and
properties that can be defined here
for the fuel and clad. The thermal
models for UO2 are functions of
temperature and burnup. The solid
mechanics models specify features
such as elasticity, creep, volumetric
strains, fuel relocation, clad growth,
and smeared cracking. The block
shown here is for the fission gas
release model, which is the Sifgrs
model. Note that it is coupled to the
AuxVariables fission rate and
the solution variable temp.

116 / 271

Material Properties/Models Block ... continued

[./clad_solid_mechanics]
type = MechZry
block = clad
disp_r = disp_x
disp_z = disp_y
temp = temp
fast_neutron_flux = fast_neutron_flux
fast_neutron_fluence = fast_neutron_fluence
youngs_modulus = 7.5e10
poissons_ratio = 0.3
thermal_expansion = 5.0e-6
output_iteration_info = false
model_thermal_expansion = false
model_irradiation_growth = true
stress_free_temperature = 295.0

[../]

Here’s an example of a solid
mechanics block. This is a
creep model for the clad, which
calculates creep and elastic
strains. Notice how the primary
solution variables
(displacements and
temperature) are parameters,
which are fully coupled. Also
note that fast neutron flux
and fast neutron fluence
are parameters, which are
defined via the
AuxVariable/AuxKernel system.
The material MechZry has an
option to compute anisotropic
thermal strain. In this example,
it is set to false, so isotropic
thermal strain is computed.

117 / 271

Material Properties/Models Block ... continued

[./fuel_solid_mechanics_swelling]
type = VSwellingUO2
block = pellet_type_1
temp = temp
burnup = burnup

[../]
[./fuel_creep]

type = CreepUO2
block = pellet_type_1
disp_r = disp_x
disp_z = disp_y
temp = temp
fission_rate = fission_rate
youngs_modulus = 2.e11
poissons_ratio = .345
thermal_expansion = 10e-6
grain_radius = 10.0e-6
oxy_to_metal_ratio = 2.0
max_its = 10
output_iteration_info = false
stress_free_temperature = 295.0

[../]

Shown in this block are two solid
mechanics models, each applied to
the fuel (block = pellet type 1). The
first is a volumetric swelling and
densification model that is a
function of temperature and burnup.
The second is a fuel creep model.

118 / 271

Material Properties/Models Block ... continued

[./fuel_relocation]
type = RelocationUO2
block = pellet_type_1
burnup = burnup
diameter = 0.0082
q = q
gap = 160e-6 # diametral gap
burnup_relocation_stop = 1.e20

[../]

Here, we define relocation, which is
applied to the fuel (block =
pellet type 1). Note the fuel pellet
diameter and diametral gap
are parameters here and that they
are currently specified independent
of the mesh. This model depends
on burnup and the function q. The
relocation strain will cease when
time reaches the value defined by
burnup relocation stop.

119 / 271

Material Properties/Models Block ... continued

[./fuel_thermal]
type = ThermalFuel
block = pellet_type_1
temp = temp
burnup = burnup
model = 4

[../]

This material block describes a
thermal model for the fuel that is a
function of temperature and burnup.
Options include

0. Duriez-Lucuta

1. Amaya-Lucuta

2. Fink-Lucuta

3. Halden

4. NFIR w/wo Gd

5. Modified NFI

120 / 271

Material Properties/Models Block ... continued

[./clad_density]
type = Density
block = clad
density = 6551.0
disp_r = disp_x
disp_z = disp_y

[../]
[./fuel_density]

type = Density
block = pellet_type_1
disp_r = disp_x
disp_z = disp_y

[../]

These material blocks give the
density for the clad and fuel. The
density will be updated due to
deformation as the simulation
progresses. Note that the density
parameter for the fuel will be taken
from the GlobalParams block.

121 / 271

The Executioner

[Executioner]
type = Transient
solve_type = PJFNK
PETSC options
petsc_options_iname = <more petsc options>
petsc_options_value = <more petsc options>
line_search = none
controls for linear iterations
l_max_its = 100
l_tol = 8e-3
controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-4
nl_abs_tol = 1e-10
time control
start_time = -200
end_time = 8.0e7
num_steps = 5000
dtmax = 2e6
dtmin = 1
adaptive timestepping options
[./TimeStepper]

type = IterationAdaptiveDT
dt = 2e2
optimal_iterations = 6
iteration_window = 2
linear_iteration_ratio = 100

[../]
[]

This block contains solver and time
stepping controls. The most important
parameters are start time, dt (time
step), end time, and the adaptive
timestepping options. The start time is
set to -200, which accounts for a cold
zero to hot zero power (fabrication
conditions to hot zero power reactor
conditions).

122 / 271

The Postprocessors Block

[Postprocessors]
[./ave_temp_interior]

type = SideAverageValue
boundary = 9
variable = temp
execute_on = linear

[../]
[]

The Postprocessors block
defines several quantities that are
used throughout the simulation.
This particular Postprocessor is
computing the average temperature
of the cladding and all pellet
exteriors. The result of
Postprocessor calculations is one
scalar at every time throughout the
simulation. Recall that
ave temp interior is used in the
plenum pressure BC. There are too
many to list, but here are the names
of a few that you will find in the
example problem:
fission gas produced,
fission gas released,
pellet volume, and
average clad temperature.

123 / 271

Output ... FINALLY!

[Outputs]
file_base = medium_out
exodus = true
[./console]

type = Console
perf_log = true
max_rows = 25

[../]
[]

The parameter file base
specifies the prefix of the output file
name. If not given, the output file
base name will be the base name
of the input file. exodus = true
defines the type of output file.
perf log = true specifies
whether or not the performance log
should be printed.

124 / 271

Other Examples

• You will find other examples of
running BISON at
bison/examples.

• It may also be helpful to review
assessment cases at
bison/assessment.

125 / 271

Mesh Generation

BISON Input Files

• BISON requires two files in order to run.

• The first of these is an input text file.

• The second is an input mesh file.
– The default format is ExodusII [3].
– This is a binary file format.

• The creation of the mesh file is the subject of this section.

127 / 271

How to Generate an ExodusII File

• CUBIT from Sandia National Laboratories (cubit.sandia.gov) [4].
– Use CUBIT directly.
– Use scripts to drive CUBIT. (This is the recommended option.)

• Smeared pellet mesh generator within BISON.

• Create an Abaqus file and import that into BISON instead.

• Output ExodusII from Patran or Ansys.

CUBIT can be licensed from Sandia (free for government use). See the website
for details.

128 / 271

CUBIT Interface

129 / 271

Boundary Condition
List

Geometry
List

Command
Line Interface

Tools
Interface

CUBIT Capabilities

• Generating a solid model

• Importing a solid model

• Automatically generating a mesh for simple geometries

• Creating 1D, 2D, or 3D meshes

• Assigning blocks, side sets, and node sets

• Being driven by a GUI, command line, journal file, or Python

130 / 271

BISON’s Mesh Generation Scripts

• Shell and Python scripts for
mostly-automatic fuel rod mesh
generation are in
bison/tools/UO2

• Relevant files are:
– mesh script.sh: Sets up

environment variables. Calls
mesh script.py and
mesh script input.py.

– mesh script.py: Main script.
Interfaces with CUBIT. Handles
both 2D and 3D geometries. User
should not have to modify this file.

– mesh script input.py Input
file. Defines geometry and mesh
parameters using Python
dictionaries.

131 / 271

Input file review: Fuel

mesh script input.py

#!/Usr/bin/env python2.5

Pellet Type 1: Active Fuel
Required parameters
Pellet1= {}
Pellet1[’type’] = ’discrete’ # ’smeared’ or ’discrete’
Pellet1[’quantity’] = 1 # Number of pellets of this type
Pellet1[’mesh_density’] = ’medium’ # Defines mesh density

Pellet1[’outer_radius’] = 0.005205
Pellet1[’inner_radius’] = 0.0
Pellet1[’height’] = 0.07521
Pellet1[’dish_spherical_radius’] = 0
Pellet1[’dish_depth’] = 0
Pellet1[’chamfer_width’] = 0
Pellet1[’chamfer_height’] = 0

Pellet Collection
This list defines the pellet in the fuel stack.
First item is at the bottom the fuel stack.

pellets = [Pellet2, Pellet1, Pellet2]

132 / 271

Defines pellet geometry.

Some of these parameters exist
only for discrete geometry.

Defines generated fuel stack

Input file review: Pellet stack

mesh script input.py

Stack options
pellet_stack = {}
pellet_stack[’default_parameters’] = False

pellet_stack[’interface_merge’] = ’point’
pellet_stack[’higher_order’] = True
pellet_stack[’angle’] = 0

Pellet stack default parameters:
pellet_stack[’interface_merge’] = ’point’
pellet_stack[’higher_order’] = False
pellet_stack[’angle’] = 0

Parameters review

• default parameters Use
default parameters without
considering below parameters

• interface merge
– ’point’ (Default) Common

vertex (2D) or curve (3D)
– ’none’ not merged

• higher order
– False: QUAD4 (2D) or HEX8

(3D).
– True: QUAD8 (2D) or HEX27

(3D).

• angle 0: create a 2D rz geometry.
> 0 create a 3D stack of the
specified angle (≤ 360◦)

133 / 271

Input file review: Clad

mesh script input.py

Clad: Geometry of the clad
clad = {}
clad[’mesh_density’] = ’medium’
clad[’gap_width’] = 0.11e-3
clad[’bot_gap_height’] = 5e-3
clad[’clad_thickness’] = 0.815e-3
clad[’top_bot_clad_height’] = 28.5e-3
clad[’plenum_fuel_ratio’] = 0.1813

clad[’with_liner’] = True
clad[’liner_width’] = 0.076e-3

Defines clad geometric parameters.
Please note:

• mesh density Clad mesh
depends on fuel mesh.

• clad width This parameter is the
total width of the clad including
the liner.

134 / 271

Input file review: Meshing parameters

mesh script input.py

Meshing parameters
mesh = {}
mesh[’default_parameters’] = False

Parameters of the mesh density ’medium’
medium = {}
medium[’pellet_r_interval’] = 11
medium[’pellet_z_interval’] = 3
medium[’pellet_dish_interval’] = 6
medium[’pellet_flat_top_interval’] = 3
medium[’pellet_chamfer_interval’] = 2
medium[’clad_radial_interval’] = 4
medium[’clad_sleeve_scale_factor’] = 1
medium[’cap_radial_interval’] = 4
medium[’cap_vertical_interval’] = 3
medium[’pellet_slices_interval’] = 16
medium[’pellet_angular_interval’] = 12
medium[’clad_angular_interval’] = 16

• Mesh parameters also stored in a
dictionary

• The name of the dictionary must
be the same as defined in the
pellet type block (mesh density)

• For a smeared pellet, the mesh
density of the fuel is controlled by
the parameters
pellet r interval and
pellet z interval. Other
pellet* parameters are used
with a discrete geometry.

• clad sleeve scale factor
– 1: same vertical density as the

fuel
– > 1: higher density
– < 1: smaller density
– Recommend ≤ 1

135 / 271

Output review: Boundary conditions

Blocks	

Block	
 1:	
 Cladding	

Block	
 2:	
 Liner	
 (if	
 present)	

Block	
 3+:	
 	
 Fuel	

Use	
 ‘clad’,	
 ‘liner’,	

‘pellet_type_1’,	

‘pellet_type_2’,	
 etc.	

1	

Sideset	
 7:	
 Cladding	
 Interior	

Sideset	
 8:	
 All	
 pellet	
 exteriors	

Sideset	
 9:	
 Union	
 of	
 7	
 &	
 8	

Sideset	
 10:	
 Outer	
 Radial	
 Surface	
 of	
 Pellets	

Sideset	
 11:	
 Top	
 Pellet	
 Top	

Sideset	
 12:	
 Centerline	
 (for	
 RZ)	

Sideset	
 13:	
 Inner	
 Radial	
 Surface	
 of	
 Pellets	

2	

3	

4	

5	

6	

20	

21	

22	

23	

Sidesets	

1001	

NS	
 1004:	
 All	
 central	
 nodesets	

NS	
 1005:	
 All	
 central	
 pellet	
 nodesets	

NS	
 2000:	
 BoVom	
 Center	
 Meso	

NS	
 2001:	
 BoVom	
 Outer	
 Meso	

NS	
 2002:	
 Middle	
 Center	
 Meso	

NS	
 2003:	
 Middle	
 Outer	
 Meso	

NS	
 3000:	
 Top	
 Center	
 Pellet	

NS	
 3002:	
 (x=<max>,	
 y=0,	
 z=*)	

1003	

1020	

1021	

1022	

1023	

Nodesets	

3001	

136 / 271

3D Boundary Conditions

• 180 Degree Model

3D Mesh Sideset 99 Definition

137 / 271

3D Boundary Conditions (cont.)

• 90 Degree Model

3D Mesh Sideset 98 Definition Sideset 99 Definition

138 / 271

Mesh script: Wrap up

• Geometry and mesh parameters
are defined in the input file for 2D
or 3D geometry

• No interaction with the main script
is required

• In the exodus file, blocks have
these names: clad, liner,
pellet type #

	

CLAD	

INPUT	
 FILE	

Dictionary:	
 clad	

Creation:	
 automatic	

	

EXODUS	
 FILE	

Type:	
 block	

Name:	
 “clad”	

Number:	
 1	

LINER	

INPUT	
 FILE	

Dictionary:	
 clad	

Creation:	
 clad[‘with_liner’]	
 =	
 True	

	

EXODUS	
 FILE	

Type:	
 block	

Name:	
 “liner”	

Number:	
 2	

PELLET	
 TYPE	
 1	

INPUT	
 FILE	

Dictionary:	
 pellet_type_1	

Creation:	
 in	
 list	
 “pellets”	

	

EXODUS	
 FILE	

Type:	
 block	

Name:	
 “pellet_type_1”	

Number:	
 3	

PELLET	
 TYPE	
 #N	

INPUT	
 FILE	

Dictionary:	
 pellet_type_N	

Creation:	
 in	
 list	
 “pellets”	

	

EXODUS	
 FILE	

Type:	
 block	

Name:	
 “pellet_type_N”	

Number:	
 N+2	

139 / 271

Mesh Examples

140 / 271

Coarse Medium Fine 3D Medium

Running BISON

Running BISON

• This section walks through the steps of running BISON on a new problem.
• We will build upon the sections describing the input file and mesh

generation.

142 / 271

Running BISON ... continued

Let’s assume that we want to run a problem similar to the example problem but
with the following differences:
• Smeared fuel pellet mesh
• Coolant pressure of 16 MPa
• Rod averaged linear power of 21 kW/m
• Clad properties:

– Thermal conductivity of 21.5 W/m/K
– Specific heat capacity of 285 J/kg/K
– Coefficient of thermal expansion of 6e-6 m/m/K
– Density of 6560 kg/m3

– Young’s modulus of 99.3 GPa
– Poisson’s ratio of 0.37

• First, copy the example problem to a new file:
– > mkdir bison/sandbox
– > cd bison/sandbox
– > cp ../examples/2D-RZ rodlet 10pellets/inputQuad8.i
myProblem.i

• Now, in a text editor, we can change the input file.

143 / 271

Editing the Input File: Mesh

Before: inputQuad8.i

Import mesh file
[Mesh]

file = quad8Medium10_rz.e
displacements = ’disp_x disp_y’
patch_size = 1000 # For contact algorithm

[]

After: myProblem.i

Import mesh file
[Mesh]

file = coarse1 rz.e
displacements = ’disp_x disp_y’
patch_size = 1000

[]

144 / 271

Editing the Input File: Functions

Before: inputQuad8.i

Define functions to control power, etc.
[Functions]

[./power_history]
type = PiecewiseLinearFile
data_file = powerhistory.csv
scale_factor = 1

[../]

[./axial_peaking_factors]
type = PiecewiseBilinear
data_file = peakingfactors.csv
scale_factor = 1
axis = 1 # (0,1,2) => (x,y,z)

[../]

[./pressure_ramp]
type = PiecewiseLinear
x = ’-200 0’
y = ’ 0 1’

[../]

[./q]
type = CompositeFunction
functions = ’power_history

axial_peaking_factors’
[../]

[]

After: myProblem.i

Define functions to control power, etc.
[Functions]

[./power_history]
type = PiecewiseLinear
x = ’0 1e4’
y = ’0 21000’

[../]

[./axial_peaking_factors]
type = PiecewiseBilinear
data_file = peakingfactors.csv
scale_factor = 1
axis = 1 # (0,1,2) => (x,y,z)

[../]

[./pressure_ramp]
type = PiecewiseLinear
x = ’-200 0’
y = ’ 0 1’

[../]

[./q]
type = CompositeFunction
functions = ’power_history

axial_peaking_factors’
[../]

[]
145 / 271

Editing the Input File: Coolant Pressure

Before: inputQuad8.i

[./Pressure]
apply coolant pressure on clad outer walls

[./coolantPressure]
boundary = ’1 2 3’
factor = 15.5e6
function = pressure_ramp

[../]
[../]

After: myProblem.i

[./Pressure]
apply coolant pressure on clad outer walls

[./coolantPressure]
boundary = ’1 2 3’
factor = 16e6
function = pressure_ramp

[../]
[../]

146 / 271

Editing the Input File: Cladding

Before: inputQuad8.i

[./clad_thermal]
type = HeatConductionMaterial
block = clad
thermal_conductivity = 16.0
specific_heat = 330.0

[../]

After: myProblem.i

[./clad_thermal]
type = HeatConductionMaterial
block = clad
thermal_conductivity = 21.5
specific_heat = 285.0

[../]

147 / 271

Editing the Input File: Cladding Continued

Before: inputQuad8.i

[./clad_solid_mechanics]
type = MechZry
block = clad
disp_r = disp_x
disp_z = disp_y
temp = temp
fast_neutron_flux = fast_neutron_flux
fast_neutron_fluence = fast_neutron_fluence
youngs_modulus = 7.5e10
poissons_ratio = 0.3
thermal_expansion = 5.0e-6
output_iteration_info = false
model_irradiation_growth = true
model_thermal_expansion = false
stress_free_temperature = 295.0

[../]

After: myProblem.i

[./clad_solid_mechanics]
type = MechZry
block = clad
disp_r = disp_x
disp_z = disp_y
temp = temp
fast_neutron_flux = fast_neutron_flux
fast_neutron_fluence = fast_neutron_fluence
youngs_modulus = 9.93e10
poissons_ratio = 0.37
thermal_expansion = 6.0e-6
output_iteration_info = false
model_irradiation_growth = true
model_thermal_expansion = false
stress_free_temperature = 295.0

[../]

148 / 271

Copy Input Data Files

• The input file uses a PiecewiseBilinear function
(axial peaking factors) that requires a comma separated value (csv)
file. PiecewiseBilinear functions allow data lookup in a table.

– > cp ../examples/2D-RZ*/peakingfactors.csv .

• The format of this csv file is as follows:

coor 1 coor 2 coor 3 . . . coor M
time 1 factor11 factor12 factor13 . . . factor1M
time 2 factor21 factor22 factor23 . . . factor2M
...

...
...

...
. . .

...
time N factornN1 factorN2 factorN3 . . . factorNM

149 / 271

Generate Smeared Pellet Mesh

• With the input file (myProject.i) complete and the csv file in place, all
that remains is to generate the mesh file:

– > cp ../tools/UO2/mesh script.sh .
– > cp ../tools/UO2/mesh script.py .
– > cp ../tools/UO2/mesh script input.py coarse1 rz.py
– > ./mesh script.sh -i coarse1 rz.py

Note, you’ll also have to modify the burnup block and axial profile to account for
the change in fuel height from 10 pellets to one pellet.

150 / 271

Run BISON

• We will now analyze this problem using BISON.
• We will use four processors with MPI (Message Passing Interface):

– > mpiexec -n 4 ../bison-opt -i myProblem.i

• To run with a single processor:
– > ../bison-opt -i myProblem.i

151 / 271

Postprocessing

Output Files

• Preferred output for MOOSE applications is ExodusII [3] binary format
• Several options for visualizing ExodusII files:

– Paraview
• Open-source general visualization tool
• http://www.paraview.org

– Ensight
• Commercial general visualization tool
• http://www.ensight.com

– Peacock
• MOOSE GUI has integrated postprocessor
• Live update of results while model is running
• Currently provides very basic postprocessing

– Blot
• Command-line visualization tool
• Part of SEACAS suite of codes for working with Exodus files
• Easily scripted, useful for generating x-y plots
• http://sourceforge.net/projects/seacas

– Patran
• Commercial pre and post-processor, requires Exodus plugin
• http://mscsoftware.com

– VisIt
• Open-source general visualization tool
• https://wci.llnl.gov/codes/visit

153 / 271

Paraview

• Open-source GUI-based visualization tool
• Provides readers for many data formats, including Exodus
• Targeted at visualization of very large data sets

– Remote parallel rendering
– Some behavior of the user interface driven by that emphasis.
– Strong preference toward loading minimal data into memory.

• Thin GUI layer on top of VTK open-source visualization toolkit (Kitware).
– Same software used for displaying graphics in Cubit

• Brief usage tutorial provided in following slides

154 / 271

Opening Results File

• Option 1: GUI
1. Click on Paraview icon, initial blank screen:

2. File→Open, Select file, Click OK

• Option 2: Command Line
1. Edit your .bashrc file to put paraview in your path:

export PATH=$PATH:/Applications/ParaView\
3.14.1.app/Contents/MacOS

2. paraview myfile.e

155 / 271

After Opening File

After opening the file, you will likely see a blank screen because your model is
still not loaded into memory:

156 / 271

Loading Model and Variables into Memory

• Paraview is designed to handle extremely large data sets
• Avoids automatically performing expensive operations

– “Apply” button must be pressed to initiate many operations
– Minimal set of variables is loaded into memory by default

• To load model and all variables in memory:
1. Click check box next to “Variables” to select all variables.
2. Click “Apply” button to load the model with the selected variables.

1

2

157 / 271

After Opening File

• Now you should see your model loaded:

158 / 271

Auto Apply

• Paraview provides option to apply parameters to changes automatically
• That option removes need to click “Apply” button
• To enable this, click on the “Apply changes to parameters automatically”

toggle button in the toolbar:

• This setting will persist the next time Paraview is launched
– The next time you open a model, it will be loaded automatically with a minimal

set of variables

159 / 271

Displaying Element Boundaries

• Switch display mode from “Surface” to “Surfaces with Edges”:

• Element boundaries are now displayed:

160 / 271

Contour Plots: Select Variable

• Select “vonmises” as the variable to be used for the contour plot:

• Icons next to variable names indicate type (element or nodal)
• If a variable wasn’t loaded, it won’t be shown in this list

161 / 271

Contour Plots: Select Variable (cont.)

• You should now see the von Mises stress contour plot:

162 / 271

Contour Plots: Enable Legend

• Click on “Toggle Color Legend Visibility” toolbar button:

• Legend is now displayed with data range 0-0 because it has not been set

163 / 271

Contour Plots: Rescale to Data Range

• “Rescale to Data Range” button operates on current time step
• Go to last time step, then rescale for that time step:

1

2
• Resulting von Mises stress plot with range scaled for last timestep

164 / 271

Contour Plots: Changing Color Map

• Click on “Edit color map” icon

• This brings up the “Color Scale Editor” dialog box
• Click on “Choose Preset” to pick a different color map:

165 / 271

Contour Plots: Changing Color Map (cont.)

• Select desired color map in “Preset Color Scales” dialog and click “OK”:

1

2

• You can make this the default by clicking “Make Default” in “Color Scale
Editor”:

166 / 271

Contour Plots: Rescale to Temporal Range

• In “Color Scale Editor”, option is provided to rescale contour bounds to
minimum/maximum of every time step.

• Click on “Rescale to Temporal Range” button, and click “Yes” when warned
about taking a long time

• Note that Minimum/Maximum have changed

Before After

167 / 271

Contour Plots: Rescale to Temporal Range (cont.)

• End result when “Color Scale Editor” dialog is closed:

168 / 271

Contour Plots: Manually set Range

• Color scale range can also be set manually.
• Re-open “Color Scale Editor” by clicking on “Edit color map” again:

• Uncheck “Automatically Rescale to Fit Data Range” box, click on “Rescale
Range”. Edit Minimum/Maximum in dialog box:

1
2

169 / 271

X-Y Plots

• Paraview can generate several types of x-y plots, including:
– Global variables over time
– Variables at selected nodes/elements over time
– Spatial variation of variables over a line

• Procedure to generate all of these will be demonstrated
• Plotting global variables:
• Filters→Data Analysis→Plot Global Variables Over Time

170 / 271

XY-Plots: Global Variables

• The result is a split view showing both the model and an x-y plot with all
global variables:

171 / 271

XY-Plots: Global Variables (cont.)

• To limit the set of variables plotted, click on the “Display” tab:
1. Click on the “Display” tab:
2. Select variables to plot from the list

• Check the box to the left of “Variable” to toggle all variables
• Select desired variables (“fis gas produced” and “fis gas released” in our case)

1

2

172 / 271

XY-Plots: Global Variables (cont.)

• Now only fission gas variables are shown:

173 / 271

X-Y Plots: Ploting Data from a Selection

• Select the button called “Select Points Through”

174 / 271

XY-Plots: Selection (cont.)

• Now select the node of interest:

175 / 271

XY-Plots: Selection (cont.)

• Use Filters again:
• Filters→Data Analysis→Plot Selection Over Time

176 / 271

XY-Plots: Selection (cont.)

• Similar to what we saw in the global variables example, the result is a split
view showing both the model and an x-y plot with all the field variables.

177 / 271

XY-Plots: Selection (cont.)

• To limit the set of variables plotted, click on the “Display” tab:
1. Click on the “Display” tab:
2. Select variables to plot from the list

• Check the box to the left of “Variable” to toggle all variables
• Select desired variables (“temp” in this example)

1

2

178 / 271

XY-Plots: Selection (cont.)

• Now, only the temperature at the node you selected is plotted:

179 / 271

XY-Plots: Line Plots

• Line plots show field data on a line defined by you. This is a convenient way
to plot the diameter of the clad as a function of axial position, for example.

• To make a Line Plot, yet again, use Filters (are you sensing a theme?):
• Filters→Data Analysis→Plot Line Over Line

180 / 271

XY-Plots: Line Plots (cont.)

• Similar to what we saw in the previous examples, the result is a split view
showing both the model and an x-y line plot with all the field variables
plotted on some line.

• At this point, you haven’t defined the position of the line. What you’re
seeing here are the magnitudes of the field variables at Time = 8e+07
plotted against positions along paraview’s default line position.

181 / 271

XY-Plots: Line Plots (cont.)

• Check the box to the left of “Variable” to toggle all variables
• Select disp 0 (radial displacement)

182 / 271

XY-Plots: Line Plots (cont.)

• Click on the window that contains the model image. Now, you can see the
location of the line.

• In the right-hand window is a line plot of the radial displacement along that
line.

183 / 271

XY-Plots: Line Plots (cont.)

• You can adjust the position of that line by clicking on the “Properties” tab
and changing the values of the two points that define the line.

• We’ve selected points coincident with the lower right, and upper right points
of the clad.

• The line plot now shows the radial displacement of the clad exterior as a
function of axial position

184 / 271

XY-Plots: Line Plots (cont.)

• By selecting out coarse.e in the Pipeline Browser window (upper left), then
toggling the “Apply Displacements” box, the line plot switches from
displaced mesh coordinates to original coordinates.

185 / 271

XY-Plots: Modify Plot Axis Properties

• To modify the axes and other properties of x-y plots, click on the “Edit View
Options” button at the top of the x-y plot pane:

• To modify the x axis range, click on Bottom Axis→Layout, then on Specify
the Axis Range, and enter new values

1 2

3

186 / 271

More on Selections: Selection Inspector

• First some cleanup: Close line chart view

• Delete plotting filters one at a time

1

2

3

4

5

6
• Now, turn on the selection inspector. Click on View→Selection Inspector

187 / 271

Selection Inspector

• The Selection Inspector is now visible on the right side of the screen.
– Provides tools for selecting sets of nodes and elements and controlling how

they are displayed

188 / 271

Selection Inspector: Selection Types

• Multiple ways to select nodes/elements:
– Selections by location

• Elements and nodes can be selected on the surface or through the volume
• Use the buttons on the top of the screen (shown previously):

– Selections by node or element ID
• Useful if you know the ID of the node/element
• Select the “Global Node IDs” option. These are the IDs used in the Exodus file.

Note: Do not select the “IDs” option. It is an internal Paraview numbering scheme.

189 / 271

Selections: Selecting by Global ID

• The Selection Inspector allows the user to manipulate the list of global IDs
• Field Type can be POINT (node) or CELL (element)
• Nodes can be added or removed from the selection list
• Click “New Value” and enter the ID of another node (177 in our case):

190 / 271

Selections: Selecting by Global ID (cont.)

• Now nodes 176 and 177 are both included in the selection:

191 / 271

Selections: Labels on selected nodes/elements

• Selected nodes and elements can be labeled by ID or any variable
• To enable node ID labels:

– Scroll to the bottom of the Selection Inspector
– Click on the “Point Label” tab under “Display Style”
– Click on the “Visible” checkbox
– Make sure “GlobalNodeId” is selected for “Label Mode”

12 3

192 / 271

Selections: Labels on selected nodes/elements (cont.)

• Selected nodes are now labled by Exodus ID:

193 / 271

Selections: Labeling by variable value

• To label by temperature, select “temp” from the list of variables
• To improve formatting, use C format specifier (try %6g) in “Label Format”
• Change the color to white to improve visibility

1

2

3

194 / 271

Selections: Labeling by variable value (cont.)

• Nodal temperatures are now labeled and formatted:

195 / 271

Animations

• Within Paraview, the model can be animated using the toolbar buttons:

• Animations can also be saved by selecting File→Save Animation:

196 / 271

Animations: Saving animation

• The dialog box for saving animations offers a control to change the frame
rate, but it does not work (as of version 3.14.1):

• Once you click on “Save Animation” you will be prompted to enter a file
name and type.

• Options are AVI, JPEG, TIFF, and PNG
• AVI option allows you to directly save animation, but with limited control

197 / 271

Animations: Combining images into movie

• For more control and higher quality, save as image (PNG recommended) to
create a sequence of images

– Images are named as: basename.0001.png, basename.0002.png, ...

• Images can be combined together into a movie using a number of tools
• ffmpeg is an open-source command-line tool for doing this:
• To create a .mov file:

ffmpeg -r 5 -i basename.%4d.png basename.mov

where:
-r controls the framerate
-i specifies png file names (note C formatting for name sequence)
basnemane.mov specifies the output file name

198 / 271

Scaling the model in one direction

• Often, fuel pin models are very long compared to the diameter.
• This can be visualized better by scaling the image in the radial direction.
• The following fuel pin model will be used to demonstrate this:

199 / 271

Scaling the model in one direction (cont.)

• Select the Display tab and scroll down to the Transformation section, where
you can translate, scale, orient (rotate), or change the origin.

• Change the Scale section from 1 1 to 10 1 as shown
• This magnifies the radial (x) direction so that the model easier to see:

200 / 271

Filters

• Paraview uses filters to control how data is displayed.
• Filters can be applied to other filters, and are shown in the Pipeline Browser
• Filters are applied to the item currently selected in the Pipeline Browser by

picking the desired filter from the “Filters” menu:

• Alternatively, common filters can be accessed through the toolbar:

201 / 271

Filter Demonstration

• An example appliction of filters will be shown in the following slides
• Filters will be used to extract Blocks 1 (cladding) and 2 (fuel)
• Different filters will be applied to these extracted blocks to display them in

different ways

202 / 271

Filters: Extracting Block 1

• Use the “Extract Block” Filter to display blocks in different ways.
• Select the model (out coarse.e) in the Pipeline Browser, then select

Filters→Alphabetical→Extract Block
• Under Properties for that filter, select Block 1 to display only that block:

203 / 271

Filters: Extracting Block 2

• Select the model (out coarse.e) in the Pipeline Browser, then apply “Extract
Block” again

• This time, select Block 2
• Now blocks 1 and 2 are both displayed, but with different properties:

204 / 271

Filters: Changing display properties in Block 2

• Select the “Extract Block 2” filter in the Pipeline Browser
• Select “temp” and edit the color map, picking a different color scale type
• Now separate variables are shown on the two blocks with different scales:

205 / 271

Filters: Threshold filter

• The “Threshold” filter displays elements based on the value of a variable
• Select “ExtractBlock1”, then Filters→Common→Threshold
• Under the filter properties, select “vonmises” and provide a range
• Now only elements with high von Mises stress in the clad block are shown:

206 / 271

Filters: Extract Block 1 (again)

• Now display the rest of the elements in Block 1 with a wireframe
• Select the model (out coarse.e) in the Pipeline Browser, then apply “Extract

Block” again
• Under the filter properties, select Block 1
• “ExtractBlock1” and “ExtractBlock3” both display Block 1

207 / 271

Filters: Display Block 1 as wireframe

• Select “ExtractBlock3” in the Pipeline Browser
• Select the “vonmises” variable
• Choose the Wireframe display mode

208 / 271

Filters: Use Glyph filter to display arrows

• The Glyph filter can display a variety of symbols at nodes
• The symbols can be scaled based on variables
• Select “ExtractBlock3” in the Pipeline Browser
• Select the Arrow glyph type, and choose the disp vector variable

209 / 271

Filters: Color scale for arrows

• Select the “Glyph1” filter in the Pipeline Browser
• Select disp and Magnitude for the contour plot
• Display the legend and pick a different color scale type

210 / 271

Linking Displays

• We can use the multiple windows feature to open two windows, each
containing a results file, and link the two displays (or windows) together.
Linking allows translation, zoom, and rotation operations in one display to
occur in the other display.

• Start by selecting the vertically split window button as shown:

211 / 271

Linking Displays (cont.)

• Now, select “3D View” from the menu in the new display you just created

212 / 271

Linking Displays (cont.)

• A new display should apear showing only the axes.
• Select the “eyeball” in the Pipeline Browser to the left of the out coarse.e

results file.

213 / 271

Linking Displays (cont.)

• Right click in the new display with the grey model and that will bring up a
“Link Camera” option. Select that.

214 / 271

Linking Displays (cont.)

• Now a window with a message “Click on another view to link with.” should
be visible. Select the original display (on left).

215 / 271

Linking Displays (cont.)

• The displays are linked! Try to rotate/zoom/translate in one window and
watch the same action occur in the other. Also try displaying a different set
of results in the new display (like temperature).

216 / 271

Best Practices and Solver
Options

Best Practices Solver Options

• This section explains some of the best practices to help decrease the
runtime of simulations and some of the solver options available to a
MOOSE application user.

• We will review:
– Best Practices

• Auto Patch Size
• Centroid Partitioning
• Inexact Newton Method

– Solver Options
• The Jacobian-free Newton-Krylov method
• PETSc options
• Preconditioning
• Time stepping options

218 / 271

Auto Patch Size

• The contact algorithm relies on a cached set of neighboring nodes for each
of the nodes on the slave contact surface. The approximate Jacobian
matrix (for the Newton method) is formed to be used as a preconditioner to
the JFNK method, and this matrix gets nonzero entries added for each of X
nearest master nodes, where X is the patch size. Thus, the patch size has
a large effect on the memory used for the Jacobian, which in turn
dominates the overall memory usage of BISON.

• In the past we would run with a fixed patch size that is large enough so that
no slave node moves further up the y axis than the highest master node in
its patch (during expansion of the fuel stack and cladding). Depending on
the mesh resolution, this can require a patch size of 20, 40, or more.

• A capability has been added to dynamically adjust the patch as the contact
surfaces move so that we can run with a much smaller patch size. To use
this feature:

[Mesh]
patch_size = 5 #something smaller than the fixed patch size
patch_update_strategy = auto

[]

219 / 271

Centroid Partitioning

• For RZ fuel rod simulations centroid partitioning can help speed up run time
by distributing nodes (in parallel simulations) by axial positions along the
rod, which leads to better load balancing on longer rods.

• Without this option, it is possible that adjacent chunks of cladding and fuel
end up on separate MPI processes increasing run time. To use centroid
partitioning:

[Mesh]
partitioner = centroid
centroid_partitioner_direction = y

[]

220 / 271

Inexact Newton Method

• PETSc includes an Eisentatd-Walker algorithm that loosens the required
linear tolerance when the Newton solve is still (assumed to be) far from the
root. This reduces the number of linear iterations early in the solve where
they are wasteful and adds more linear iterations as the Newton solver
closes in on the root. These algorithms have been shown to increase
robustness and efficiency for many PDEs. To use this algorithm:

[Executioner]
petsc_options = ’-snes_ksp_ew’
l_tol = 1e-2 #<---------- l_tol is ignored when the EW algorithm is used.

[]

221 / 271

Jacobian Free Newton Krylov

• J(un)δun+1 = −R(un) is a linear system of equations to solve during each
Newton step.

• In a Krylov iterative method (such as GMRES) we have the representation:

δun+1,k = a0r0 + a1Jr0 + a2J2r0 + · · ·+ ak Jk r0

• Note that J is never explicitly needed. Instead, only the action of J on a
vector needs to be computed.

• This action can be approximated by:

Jv ≈ R(u + εv)− R(u)

ε

• This form has many advantages:
– No need to do analytic derivatives to form J
– No time needed to compute J (just residual computations)
– No space needed to store J

222 / 271

JFNK Overview

|R(u0)|)

δun+1=(J(1(un)R(un))

Linear)tolerance))
•  To)reduce)linear)error)increase)linear)itera5ons.)
•  Precondi.oning%improves%convergence%with%linear%

itera.ons,)not)with)nonlinear)itera5ons.)
•  Don’t)waste)5me)with)5ght)linear)tolerance)when)

s5ll)far)away)from)root)(try)Eisenstadt(Walker).)

|R(u1)|)

Nonlinear)tolerance)
Itera5ons)depend)on:)
•  Quality)of)ini5al)guess.)
•  Nonlinearity)of)problem.)
•  Quality)of)δun.)

223 / 271

PETSc Solver Options

• PETSc provides many options for the solver and preconditioner:
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf

• Codes that use PETSc (e.g. MOOSE) can use a command-line interface to
specify solver options. For example:

bison -i myfile.i -snes_ksp_ew -ksp_monitor -pc_type hypre
-snes_linesearch_type basic -ksp_gmres_restart 100

• Those can also be specified in the input file using the following commands:

petsc options ⇒ Command line options with no arguments
petsc options iname ⇒ Command line options with arguments
petsc options value ⇒ Arguments to options (in order)

• The equivalent input file syntax for the above example would be:

[Executioner]
...
petsc_options = ’-snes_ksp_ew -ksp_monitor’
petsc_options_iname = ’-pc_type -snes_linesearch_type -ksp_gmres_restart’
petsc_options_value = ’hypre basic 100’
...

[]

224 / 271

PETSc-specific Options

• The following PETSc-specific options are still used:

Executioner/ Executioner/
petsc options iname petsc options value Description
-pc type ilu Default for serial

bjacobi Default for parallel with ilu sub pc type
asm Additive Schwartz with ilu sub pc type
lu Full LU. . . serial only!
hypre Hypre. . . usually used with Multigrid

-sub pc type ilu, lu, hypre Can be used with bjacobi or asm
-pc hypre type boomeramg Used with hypre to use algebraic multigrid
-ksp gmres restart # Number of Krylov vectors to keep

• PETSc-specific options with no arguments:

Executioner/
petsc options Description
-snes linesearch monitor Show progress of line searches
-snes view Show summary at end of each nonlinear solve
-info Show tons of information during the solve
-snes ksp ew use Eisenstadt-Walker inexact Newton

225 / 271

Recommended starting point for PETSc (no mechanical
contact)

• Default preconditioning matrix (block diagonal), preconditioned JFNK.
• Use Hypre with algebraic multigrid and store 101 Krylov vectors.
• Use inexact Newton method.
• Turn off line searches for thermo-mechanics.

[Executioner]
...
#Preconditioned JFNK (default)
solve_type = ’PJFNK’
petsc_options = ’-snes_ksp_ew’
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart’
petsc_options_value = ’hypre boomeramg 101’
line_search = ’none’

l_max_its = 100
l_tol = 1e-2 # ignored because of inexact Newton
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10

...
[]

226 / 271

Recommended starting point for PETSc (with
mechanical contact)

• Default preconditioning matrix (block diagonal), preconditioned JFNK.
• Do not use multigrid or ASM (they do not work well with contact).
• Use a direct solver. Fastest is SuperLU DIST in parallel.
• Turn off line searches for thermo-mechanics.

[Executioner]
...
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_factor_mat_solver_package -ksp_gmres_restart’
petsc_options_value = ’ lu superlu_dist 101’
line_search = ’none’

l_max_its = 100
l_tol = 1e-2
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10

...
[]

• Note: BISON, MOOSE, and libmesh must be re-built from scratch to use SuperLU:

module load moose-dev-clang
module load petsc-3.4.3-superlu
cd my/bison/source/directory
make cleanall
./moose/scripts/update_and_rebuild_libmesh.sh
make

227 / 271

The Preconditioning Block

[Preconditioning]

[./my_prec]
type = SMP
SMP Options Go Here!
Override PETSc Options Here!

[../]

#[./other_prec]
#type = PBP
PBP Options Go Here!
Override PETSc Options Here!

#[../]
[]

• The Preconditioning block allows you
to define which type of preconditioning
matrix to build and what process to apply.

• You can define multiple blocks with
different names, allowing you to quickly
switch out preconditioning options.

• Each sub-block takes a type parameter to
specify the type of preconditioning matrix.

• Within the sub-blocks you can also provide
other options specific to that type of
preconditioning matrix.

• You can also override PETSc options here.

• Only one block can be active at a time.

228 / 271

Example with specified preconditioning scheme

• Single matrix preconditioner: Fill in all off-diagonal blocks, preconditioned
JFNK, solve linear system with LU

[Preconditioning]
[./SMP]

type = SMP
full = true
petsc_options_iname = ’-pc_type’
petsc_options_value = ’lu’

[../]
[]

229 / 271

Some Common Options for All Executioners

• There a number of options that appear in the executioner block that control
the solver.

• Here are a few common options:

Option Typical value Description
line search “none” always use full Newton step
l tol 10−2 linear tolerance
l max its 50 maximum linear iterations
nl rel tol 10−6 nonlinear relative tolerance
nl abs tol 10−10 nonlinear absolute tolerance
nl max its 100 maximum nonlinear iterations

230 / 271

Transient Executioner and TimeStepper

• Transient executioners are used to solve a nonlinear problem over several
time steps.

• A TimeStepper is used in conjunction with a Transient Executioner to
control the time step size.

• Several TimeStepper types available:
– ConstantDT
– FunctionDT
– IterationAdaptiveDT

• Frequently used general timestepping options that go in Executioner block

num steps ⇒ Maximum Number of Timesteps
start time ⇒ Start Time of the Simulation
end time ⇒ The End Time of the Simulation
dtmax ⇒ Maximum timestep size
dtmin ⇒ Mininum timestep size

231 / 271

IterationAdaptiveDT TimeStepper

• The IterationAdaptiveDT TimeStepper controls the time step based on the
solution difficulty, measured by the number of nonlinear iterations required
to solve the previous step.

• It can also adjust the solution time based on change in a time-dependent
function (i.e. power history).

• This is the TimeStepper type most commonly used in BISON analyses
• Frequently used options:

dt ⇒ Initial Timestep size
optimal iterations ⇒ Optimal number of nonlinear iterations
iteration window ⇒Window within which timestep held constant
timestep limiting function ⇒ Function whose change limits timestep size
force step every function point⇒ Step at every point in a piecewise function

0 iterations

increase time step decrease time stepmaintain time step

optim
al

w
indow

w
indow

232 / 271

Adding a New Material Model to
BISON

Material Models in BISON

• The modular, object-oriented structure of MOOSE makes it straightforward
to add new material models to BISON.

• Recall from MOOSE training that material models compute parameters
used in kernels.

– For example, computing specific heat.

• Here are some examples of material and behavioral models in BISON:
– Thermal models (compute thermal conductivity as a function of burnup, e.g.)

– Constitutive models that are used with solid mechanics to compute stress (e. g.
a creep model that is a function of burnup)

– Models that compute strain (volumetric swelling and relocation models, e.g.)

– Fission gas release models that calculate gas produced and released and may
contribute to strain due to fission products.

• This section will demonstrate adding a new thermal material model.

234 / 271

Material Models in BISON ... continued

Recall the inheritance structure from MOOSE training.

235 / 271

A New Thermal Material Model

• Let’s suppose we want to create a new model for the evolving thermal
conductivity and specific heat of a fuel material (called ThermalMyMaterial
in this example).

• Our model will depend on temperature and burnup.

• Our model will also depend on input parameters α and β.

236 / 271

Creating a New File

• The source files for nuclear-specific material models are in
bison/src/materials/.

• The header files for these models are in bison/include/materials/.

• Looking in those directories, we see that ThermalZry in bison is a
simple material model that can be used as a template. To make things
simple, let’s copy ThermalZry.C and ThermalZry.h to new files. From
the project root directory:

– > cp bison/src/materials/ThermalZry.C
bison/src/materials/ThermalMyMaterial.C

– > cp bison/include/materials/ThermalZry.h
bison/include/materials/ThermalMyMaterial.h

• Using your favorite text editor, change every instance of the name
ThermalZry in files ThermalMyMaterial.C and
ThermalMyMaterial.h to the name ThermalMyMaterial.

• Important! Be sure to change THERMALZRY H to THERMALMYMATERIAL H
in the header (.h) file.

237 / 271

Resulting Header File (ThermalMyMaterial.h) ...

Before:

#ifndef THERMALZRY_H
#define THERMALZRY_H

#include "Material.h"

//Forward Declarations
class ThermalZry;

template<>
InputParameters validParams<ThermalZry>();

/**
* Temperature dependent thermal properties

* of zirconium alloy

*/

class ThermalZry : public Material
{
public:

ThermalZry(const std::string & name,
InputParameters parameters);

protected:
virtual void computeProperties();
.
.
.

#endif //THERMALZRY_H

After:

#ifndef THERMALMYMATERIAL H
#define THERMALMYMATERIAL H

#include "Material.h"

//Forward Declarations
class ThermalMyMaterial;

template<>
InputParameters validParams<ThermalMyMaterial>();

/**
* Temperature and burnup dependent thermal properties

* of ThermalMyMaterial

*/

class ThermalMyMaterial : public Material
{
public:

ThermalMyMaterial(const std::string & name,
InputParameters parameters);

protected:
virtual void computeProperties();
.
.
.

#endif //THERMALMYMATERIAL H

238 / 271

Including New Parameters in Header File

• Edit the header file to accommodate additional parameters:
– Real number parameters α and β.

– Burnup variable to couple with.

• Note that the convention is to start each member variable with an
underscore.

239 / 271

Resulting Header File (ThermalMyMaterial.h) ...

Before:

.

.

.
class ThermalMyMaterial : public Material
{
public:

ThermalMyMaterial(const std::string & name,
InputParameters parameters);

protected:
virtual void computeProperties();

private:
bool _has_temp;

const VariableValue & _temp;
const VariableGradient & _grad_temp;

MaterialProperty<Real> & _thermal_conductivity;
MaterialProperty<Real> & _thermal_conductivity_dT;
MaterialProperty<Real> & _specific_heat;

};

#endif //THERMALMYMATERIAL_H

After:

.

.

.
class ThermalMyMaterial : public Material
{
public:

ThermalMyMaterial(const std::string & name,
InputParameters parameters);

protected:
virtual void computeProperties();

private:
bool _has_temp;

const VariableValue & _temp;
const VariableGradient & _grad_temp;
bool has burnup;
const VariableValue & burnup;

MaterialProperty<Real> & _thermal_conductivity;
MaterialProperty<Real> & _thermal_conductivity_dT;
MaterialProperty<Real> & _specific_heat;

const Real alpha;
const Real beta;

};

#endif //THERMALMYMATERIAL_H

240 / 271

Including New Parameters in Source File

• Edit the source file to accommodate the parameters α and β, and the
burnup variable.

• Two types of changes are required to get the parameters ready for use:
1. Adding the parameters to the list of InputParameters to be parsed.

2. Adding the parameters to the initialization list of ThermalMyMaterial.

241 / 271

Resulting Source File (ThermalMyMaterial.C) ...

For the parsing...

Before:

#include "ThermalMyMaterial.h"
.
.
.

template<>
InputParameters validParams<ThermalMyMaterial>()
{

InputParameters params = validParams<Material>();

params.addCoupledVar("temp", "Coupled Temperature");

return params;
}

.

.

.

After:

#include "ThermalMyMaterial.h"
.
.
.

template<>
InputParameters validParams<ThermalMyMaterial>()
{

InputParameters params = validParams<Material>();

params.addCoupledVar("temp", "Coupled Temperature");
params.addCoupledVar("burnup", "Coupled Burnup");

params.addRequiredParam<Real>("alpha",
"The alpha parameter");

params.addRequiredParam<Real>("beta",
"The beta parameter");

return params;
}

.

.

.

242 / 271

Resulting Source File (ThermalMyMaterial.C) ...

For the initialization...

Before:

.

.

.
ThermalMyMaterial::ThermalMyMaterial(

const
InputParameters & parameters)

: Material(parameters),
_has_temp(isCoupled("temp")),
_temp(_has_temp ? coupledValue("temp") : _zero),
_grad_temp(_has_temp ? coupledGradient("temp") :

_grad_zero),
_thermal_conductivity(

declareProperty<Real>("thermal_conductivity")),
_thermal_conductivity_dT(

declareProperty<Real>("thermal_conductivity_dT")),
_specific_heat(

declareProperty<Real>("specific_heat"))
{
}

.

.

.

After:

.

.

.
ThermalMyMaterial::ThermalMyMaterial(

const
InputParameters & parameters)

: Material(parameters),
_has_temp(isCoupled("temp")),
_temp(_has_temp ? coupledValue("temp") : _zero),
_grad_temp(_has_temp ? coupledGradient("temp") :

_grad_zero),
has burnup(isCoupled("burnup")),
burnup(has burnup ? coupledValue("burnup") :
zero),

_thermal_conductivity(
declareProperty<Real>("thermal_conductivity")),

_thermal_conductivity_dT(
declareProperty<Real>("thermal_conductivity_dT")),

_specific_heat(
declareProperty<Real>("specific_heat")),

alpha(getParam<Real>("alpha")),
beta(getParam<Real>("beta"))

{}
.
.
.

243 / 271

Coding New Model Equations

• Edit the source file to compute the thermal conductivity and specific heat
according to our new model.

• Let’s suppose that our equations are:
– k = 5(T − 500)α(1− Bu3)

– C = 50 + (T/1000)β

244 / 271

Resulting Source File (ThermalMyMaterial.C)

After:

.

.

.
void
ThermalMyMaterial::computeProperties()
{

for(unsigned int qp=0; qp<_qrule->n_points(); ++qp)
{

// Conductivity of irradiated MyMaterial: W/(m K)
const Real b(1-std::pow(burnup[qp],3));
thermal conductivity[qp] = 5*std::pow(temp[qp]-500, alpha)*b;
thermal conductivity dT[qp] = 5* alpha*std::pow(temp[qp]-500, alpha-1)*b;

// Specific heat: J/(mol K)
specific heat[qp] = 50 + std::pow(temp[qp]/1000, beta);

}
.
.
.

245 / 271

Registering Our Model with BISON

• The final code change is to tell BISON about our model.

• This is done by modifying bison/src/base/BisonApp.C.

• Recompile BISON to have your changes available for use.

246 / 271

Resulting Source File (BisonApp.C)

Before:

.

.

.
#include "MesoThCond.h"
#include "RichUO2.h"
#include "ThermalUO2.h"
#include "ThermalUO2Meso.h"

.

.

.
registerMaterial(MesoThCond);
registerMaterial(RichUO2);
registerMaterial(ThermalUO2);
registerMaterial(ThermalUO2Meso);

.

.

.

After:

.

.

.
#include "MesoThCond.h"
#include "RichUO2.h"
#include "ThermalMyMaterial.h"
#include "ThermalUO2.h"
#include "ThermalUO2Meso.h"

.

.

.
registerMaterial(MesoThCond);
registerMaterial(RichUO2);
registerMaterial(ThermalMyMaterial);
registerMaterial(ThermalUO2);
registerMaterial(ThermalUO2Meso);

.

.

.

247 / 271

Running with Our New Model

[Materials]
.
.
.
[./new_model]

type = ThermalMyMaterial
block = 2
temp = temp
burnup = burnup
alpha = 0.6
beta = 0.333

[../]
.
.
.

[]

To run our new model, we simply
include its description in the
Materials section of our BISON
input file.

248 / 271

Maintaining Our Model

• To keep up-to-date with the latest BISON/MOOSE changes, periodically
run the following in the project root directory:

– git pull --rebase upstream devel
– git submodule update

• You are encouraged to commit your changes to the repository. If you
commit your code

– The BISON team assumes a level of ownership.
– Others will be able to access and modify your code.
– Those making changes that prevent your code from compiling must eliminate

those errors before committing their changes.
– You must also commit at least one regression test. This helps ensure that no

one breaks your code.

• If you do not commit your code
– No one else has access to it.
– It is your responsibility to update your code if others’ changes prevent your code

from compiling.

• If your code has wide applicability (particularly if others are interested in it),
you can improve the code by committing your work. Remember, though,
that at least one regression test is required.

249 / 271

Committing Your New Material Model

• From the idaholab/bison GitLab page. Click Issues and then create a New
Issue.

• Change directories to where you cloned your fork, and run:
– git checkout devel (this ensures you are branching off of the devel

branch)
• Decide on the name of your branch. (e.g. my material 1729, where 1729

references your issue number). Now create your branch:
– git checkout -b your branch name devel

250 / 271

Committing Your New Material Model

• Add the files you just created and modified to your local copy of the BISON
repository.

– from bison/ type git add src/materials/ThermalMyMaterial.C
– from bison/ type git add
include/materials/ThermalMyMaterial.h

– from bison/ type git add src/base/BisonApp.C

• If you type git status the screen should look like:
– Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

• modified: src/base/BisonApp.C
• new file: src/materials/ThermalMyMaterial.C
• new file: include/materials/ThermalMyMaterial.h

• If you see a file you don’t want to commit type:
– git checkout the offending file name (this will ”revert” to that file’s

original status)
• Your code will be rejected if it has trailing whitespace. It is recommended to

run a script to remove the trailing whitespace:
– ./scripts/delete trailing whitespace.sh

• If you are an Emacs user, add the following to your .emacs file:
– (add-hook ’before-save-hook ’delete-trailing-whitespace)

251 / 271

Committing Your New Material Model

• Commit your changes locally.
– git commit -m "Some message which references
#your issue number"

• Make sure you are up to date by typing:
– git pull --rebase upstream devel
– git submodule update

• Compile and run the tests.
• Push the branch to your fork.

– git push origin your branch name

• Go back to the GitLab website and create a Merge Request. Reference
your issue number. The BISON team will now comment on your
contributions and you’ll have to address those comments.

252 / 271

Addressing BISON Team Comments

• Ensure you are up to date
– git pull --rebase upstream devel
– git submodule update

• Make your changes then compile and run the tests. Next amend your
commit:

– git commit -a --amend (this will bring up a vi editor to change the commit
message. You can just type :wq)

– git push -f origin your branch name

• Once the BISON team is satisfied with your contributions we will merge
your changes. Once the changes are merged you can delete your branch.

253 / 271

Deleting your Branch

• Delete your branch locally.
– git branch -D your branch name

• Delete branch on GitLab
– git push origin :your branch name

• Delete references to GitLab branch in local repository
– git remote prune origin

• Once your branch is deleted you have successfully committed to BISON.

254 / 271

Adding a Regression Test to
BISON

Regression Test - Definition

• A simple simulation that you design for the purpose of testing a new
feature. Regression tests generally have an analytical solution and are
designed to verify that the software computes the correct result.

• For example, if you committed ThermalMyMaterial model from the
“Adding a New Material Model to BISON” section, you would include a
regression test.

• A regression test for ThermalMyMaterial would ensure the proper
values of thermal conductivity are calculated.

• Regression tests usually consist of a single element and run in less that 2
seconds on 1 processor.

256 / 271

Adding Your New Regression Test

• Start by copying a similar regression test. These can be found in
bison/tests/

• Let’s add a regression test for ThermalMyMaterial

• We’ll start with a similar test located at bison/tests/thermalU3Si2/,
which tests a thermal model for Uranium Silicide. In this test, temperature
of the single element domain is controlled via application of a Dirichlet
boundary condition. Values for thermal conductivity and specific heat are
recorded and checked against an analytical expression.

• Create a directory in bison/tests/ called ThermalMyMaterial
– in bison/tests/ type mkdir ThermalMyMaterial

• Then, copy the input file, mesh, and a file called tests from
thermalU3Si2/ to the directory you just created

– in bison/tests/ThermalMyMaterial/ type cp
../thermalU3Si2/thermalU3Si2.i ThermalMyMaterial.i

– then type cp ../thermalU3Si2/1x1x1cube.e .
– then type cp ../thermalU3Si2/tests .

257 / 271

Adding Your New Regression Test... continued

The next step is to edit the file ThermalMyMaterial.i. Recall that this input
file was copied from one used to test a thermal model for Uranium Silicide,
which has models for thermal conductivity and specific heat, each of which
depends on temperature. Thermal conductivity in our new model
(ThermalMyMaterial) depends on temperature and burnup and specific heat
depend on only temperature. So, we have to modify this input file so that
ThermalMyMaterial is used, and we need to supply our new model with
burnup as a variable.

Also note that this input file begins with a description of the test, references, and
results from BISON and the corresponding analytical expressions for thermal
conductivity and specific heat. This information is important and expected in an
input file for a regression test. Other users and developers will look at this
information to understand the model and the test.

258 / 271

Editing the input file (ThermalMyMaterial)

Before:

[Mesh]
file = 1x1x1cube.e

[]

[Variables]
[./T]

order = FIRST
family = LAGRANGE
initial_condition = 300

set initial T to 300 K
[../]

[]

After:

[GlobalParams]
density = 1200

[]

[Mesh]
file = 1x1x1cube.e

[]

[Variables]
[./T]

order = FIRST
family = LAGRANGE
initial_condition = 500

set initial T to 300 K
[../]

[]

We added the [GlobalParams] block because we’re going to add the burnup variable, which is a
function of density. The parameter density now shows up in more than one place in the input file,
so it’s convenient and less error prone to include it in the [GlobalParams] block.

259 / 271

Editing the input file (ThermalMyMaterial.i)...

Before:

[AuxVariables]
[./th_cond]

order = CONSTANT
family = MONOMIAL

[../]
[./cp]

order = CONSTANT
family = MONOMIAL

[../]
[]

After:

[AuxVariables]
[./fission rate]

order = FIRST
family = LAGRANGE

[../]
[./burnup]

order = FIRST
family = LAGRANGE

[../]
[./th_cond]

order = CONSTANT
family = MONOMIAL

[../]
[./cp]

order = CONSTANT
family = MONOMIAL

[../]
[]

260 / 271

Editing the input file (ThermalMyMaterial.i)...

Before:

[AuxKernels]
[./th_cond]

type = MaterialRealAux
variable = th_cond
property = thermal_conductivity
block = 1

[../]

[./cp]
type = MaterialRealAux
variable = cp
property = specific_heat
block = 1

[../]
[]

After:

[AuxKernels]
[./fissionrate]

type = FissionRateAux
variable = fission rate
value = 1.183e19
execute on = timestep begin

[../]
[./burnup]

type = BurnupAux
variable = burnup
fission rate = fission rate
execute on = timestep begin

[../]
[./th_cond]

type = MaterialRealAux
variable = th_cond
property = thermal_conductivity
block = 1

[../]

[./cp]
type = MaterialRealAux
variable = cp
property = specific_heat
block = 1

[../]
[]

261 / 271

Editing the input file (ThermalMyMaterial.i)...

Before:

[Materials]

[./fuel_thermalU3Si2]
type = ThermalU3Si2
block = 1
temp = T

[../]

[./density]
type = Density
block = 1
density = 1200.0

[../]
[]

After:

[Materials]

[./fuel ThermalMyMaterial]
type = ThermalMyMaterial
block = 1
temp = T
burnup = burnup
alpha = 0.6
beta = 0.333

[../]

[./density]
type = Density
block = 1

[../]
[]

Note how the parameter density is not included in the [Materials] block because we already
included it in the [GlobalParams] block

262 / 271

Editing the input file (ThermalMyMaterial.i)...

Before:

[Postprocessors]
[./avg_th_cond]

type = ElementAverageValue
block = 1
variable = th_cond

[../]
[./avg_cp]

type = ElementAverageValue
block = 1
variable = cp

[../]
[./average_fuel_T]

type = ElementAverageValue
output = both
block = 1
variable = T

[../]
[]

After:

[Postprocessors]
[./avg_th_cond]

type = ElementAverageValue
block = 1
variable = th_cond

[../]
[./avg_cp]

type = ElementAverageValue
block = 1
variable = cp

[../]
[./average_fuel_T]

type = ElementAverageValue
output = both
block = 1
variable = T

[../]
[./average fuel burnup]

type = ElementAverageValue
output = both
block = 1
variable = burnup

[../]
[]

263 / 271

Editing the input file (ThermalMyMaterial.i)...

Before:

[Output]
linear_residuals = true
interval = 1
output_initial = true
exodus = true
perf_log = true

[]

After:

[Output]
linear_residuals = true
postprocessor csv = true
interval = 1
output_initial = true
exodus = true
perf_log = true

[]

Note the additional parameter postprocessor csv = true. When you commit this test, you
should comment out this parameter. If left enabled, this parameter will produce a csv file that
contains the history of the Postprocessors defined in the input file. You don’t want the regression test
to reproduce this file every time it runs. However, before you commit this test, you could use this file
to compare BISON calculations with, say, spread sheet calculations of equations for thermal
conductivity and specific heat that we coded in ThermalMyMaterial.C. Then, include a summary
of these calculations at the beginning of the regression test input file. See
bison/tests/thermalU3Si2.i for an example. For the test we just created, thermal
conductivity should be reported as a function of burnup and temperature. Specific heat should be
reported as a function of temperature.

264 / 271

Editing the tests file

Before:

[Tests]
[./U3Si2_test]

type = ’Exodiff’
input = ’thermalU3Si2.i’
exodiff = ’thermalU3Si2_out.e’

[../]
[]

After:

[Tests]
[./ThermalMyMaterial]

type = ’Exodiff’
input = ’ThermalMyMaterial.i’
exodiff = ’ThermalMyMaterial out.e’

[../]
[]

265 / 271

Finishing steps and gold/

• Run your simulation and verify that it runs as you expect.

• Provide documentation of the test in the input file.

• Create a directory called gold/ in
bison/tests/ThermalMyMaterial/

• Move the exodus output file to the gold/ directory.
– > mv ThermalMyMaterial out.e gold/

• Run BISON tests and make sure the new test passes.
– >./run tests -j4 from the bison/ directory.

• Make sure that the output exodus file as well as any other extraneous files
are deleted from the directory bison/tests/ThermalMyMaterial/.

• Add the new directory and commit it as outlined in the previous section.

• Done.

266 / 271

Additional Information

Additional Information: Useful Git Commands

> git clone git@hpcgitlab.inl.gov:<username>/bison.git -
Clones your bison fork to your computer. > git pull --rebase upstream
devel - Updates local repository against the devel branch of the upstream
remote.
> git submodule update - Updates your submodules.
> git add <filename> - Registers the file with git. Use -i for interactive
mode. Use with -f to force add files that are in the .gitignore file.
> git commit -m ’commit message’ - Commits the file(s) that were
added to the current branch. Use –amend to amend to the previous commit.
> git checkout -b <branch name> - Creates a branch and checks it out.
> git checkout -b <branch name> <sha> - Creates a branch with the
specified sha. Good for checking out previous versions.
> git branch -D <branch name> - Force deletes the branch.
> git status
> git log
> git reset --hard HEAD - Removes any staged files and puts the
repository back to the head
> git clean -dfx - Deletes all files that are not registered with the
idaholab/bison repository. This is useful if you have build issues or a corrupted
repo.

268 / 271

Additional Information: PBS Submission Script

#!/bin/bash
#PBS -M <your email>
#PBS -m abe
#PBS -N <jobname>
#PBS -l select=1:ncpus=24:mpiprocs=24
The above line requests the resources. select=<number of nodes>,
ncps=<number of cpu/node> and mpiprocs=<number cpus actually running the
problem>
#PBS -l place=scatter:excl
#PBS -l walltime=48:00:00
JOB NUM=$PBS JOBID%%\.*
log=<logname>
input file=<filename>
cd $PBS O WORKDIR
module load use.moose moose-dev-gcc
date > $log
mpiexec <path to bison-opt> -i $input file >> $log
date >> $log

269 / 271

References

References

M. M. Rashid.
Incremental kinematics for finite element applications.
Internat. J. Numer. Methods Engrg., 36:3937–3956, 1993.

A. M. Ross and R. L. Stoute.
Heat transfer coefficient between UO2 and Zircaloy-2.
Technical Report AECL-1552, Atomic Energy of Canada Limited, 1962.

L. Schoof and V. Yarberry.
EXODUS II: A finite element data model.
Technical Report SAND92-2137, Sandia National Laboratories, September
1996.

Sandia National Laboratories.
CUBIT: Geometry and mesh generation toolkit.
http://cubit.sandia.gov, 2008.

271 / 271

	BISON Overview
	Getting Started
	Git
	Building BISON
	Contributing to BISON
	External Users

	Thermomechanics Basics
	Heat Conduction
	Solid Mechanics
	Contact

	Fuels Specific Models
	Example Problem
	Mesh Generation
	Running BISON
	Postprocessing
	Best Practices and Solver Options (Advanced Topic)
	Adding a New Material Model to BISON
	Adding a Regression Test to bison/test
	Additional Information
	References

